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around. The barriers are straight line seg-
ments that may be combined into poly-
gons and even mazes. Each region of the
diagram delimits a set of points that have
not only the same closest existing point,
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linear complexity in the number of input
points and barrier lines, may be hyperbolic
sections as well as straight lines. The sec-
ond construction considers the Voronoi
diagram on the surface of a convex poly-
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point in a given region from the closest
fixed source point travels over the same
sequence of faces to the same closest point.
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/7% PATIAL LOCATION AND CORRELATION ALGO-
s rithms are an essential aspect of computa-
%2 tional geometry. Typical problems include
#u.” determining which objects of a large set are
close to one another, and the shortest path from
a source to a goal, assuming some metric. As well
as the practical applications of computational ge-
ometry in the area of computer graphics [19. 20],
another important application to robotics that
deserves attention is the determination of the most
efficient way to move a robot arm from one point
to another without colliding with any other objects
in the workspace.
This paper presents a new construction intended
to be of assistance in minimal path problems by
extending the concept of the two-dimensional Vo-
ronoi diagram to handle more complicated
geometries. Here we will extend the concept by
allowing opaque barriers in the plane. A path,
along which a distance is measured, must not pass
through a barrier, but will travel alternately
through free space in a straight line and bend
around the end of a barrier as shown by Lozano-
Perez and Wesley [45]. We will call the vertices
where the path starts, stops, or bends ‘contact
vertices”’, their ordered list the *‘contact list”’, and
the path between two consecutive contact vertices
a “leg™.
Although initially the barriers are straight line seg-
ments, they may easily be generalized into poly-
gons whose interiors are forbidden, and even into
maze-like diagrams. With barriers, even the one
point Voronoi diagram is of nontrivial complexity,
although the total number of new edges in the
diagram is linear in the number of barriers. The
new edges may now be hyperbolic sections as well
as straight lines. This is similar to Drysdale’s gener-
alized Voronoi diagram which can have parabolic
sections [15].
Once the Voronoi diagram on the points and bar-
riers has been calculated, the traditional operations
such as closest point may be performed. However,
here it is necessary to know the shortest path
as well as the closest point. Thus, the one point
Voronoi diagram is equivalent to a single source
— multiple goals minimal path problem. There are
many algorithms for determining which region of
a planar graph contains a new point. They must
be modified slightly to be useful here because of
the hyperbolae, but the changes are expected to
be minor.
An application of this construction is in robotics.
Assume that we have a fixed scene where the robot
always starts from the same point and must avoid
the same barriers. However, we wish to move the
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robot to a different goal point each time. Thus
it i1s worthwhile to preprocess the scene so that
the execution time of the algorithm on a new goal
point is fast.

A second generalization of the Voronoi diagram
is also useful. This is to use the surface of a convex
polyhedron instead of a plane surface. A one point
diagram is again nontrivial, and in addition to the
closest point, we need the shortest path itself.

This problem arises naturally as a subproblem of
the task of finding the shortest path in E* from
a source to a goal in the presence of convex poly-
hedral obstructions. Such a path will alternately
have two components: a straight line through free
space, and a traversal along the surface of a poly-
hedron between where the path “lands™ from free
space, and where it ““takes off " again.

In the following sections, we will see a review of
the Voronoi diagram. a summary of the other
shortest path problems, a summary of the planar
point location algorithms, and then the forms of
the new Voronoi diagrams along with algorithms
to compute them.

Voronoi diagrams

The Voronoi diagram on a set S of » points in
the plane is a partition of the plane into # regions,
one containing each point [7, 29, 64]. The region
around point pe S is:

w(p)={q|VreS—{p}, d(p, 9)<d(r, q)}

that is, the part of the plane closer to p than to
any other point of S. We can generalize this in
two ways. First, we night partition the plane ac-
cording to the k& closest points, instead of the single
closest point. Thus, for a subset H of S such that
| H|=k (cardinality of set H),

w(H)={q|YheH, YreS—H, d(h.q)<d(r, q)}

In particular, for k=n—1, we have the farthest
point Voronoi diagram, so that for any new point
we can easily determine the farthest existing point.
These constructions will solve problems such as
finding the smallest circle enclosing » points and
finding the largest empty circle whose center is in-
side the convex hull of the n points. The Voronoi
diagram of # points can be found in time 7=
8(n log n) as proved by Shamos [63].
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A second form of generalization is to allow more
general objects than points such as Drysdale’s
constructions [15]. Here we compute the diagram
around finite line segments. This causes several
complications: the regions have parabolic as well
as straight edges, the regions may be concave. the
dual of the diagram may be a multigraph (have
more than one edge between two given vertices),
and the construction time is a little slower [T=
6(n, exp(c}/logn)) where c is a constant].

Other minimal path algorithms

There has been much previous work on this and
related problems. The reader is referred to Akman
[4] for a review and a long list of references. The
minimal path problem is in some ways an
extension of the well-known travelling salesman
problem [56] (TSP) where we wish to determine
the minimal cycle that traverses a given set of
vertices in any order. Although the TSP is NP-
complete, recent work by Kirkpatrick et al. [1] that
draws inspiration from the crystallization of solids
as they are slowly cooled in statistical mechanics
produces good approximate optima in 8(n logn)
time. Although there is a technical difficulty arising
from the distance metric, the Euclidean version of
the TSP is also NP-complete [25, 26, 50]. Since
the fastest known algorithms for NP-complete
problems require an execution time that is expo-
nential in the size of the input, they are too slow
to use.

Reif [54] considers the existence problem of wheth-
er there is any path at all to move a polyhedral
object around some barriers from a source S to
a goal G. He allows the object to be rotated if
necessary, just as a sofa must be rotated to move
it around a corner in a narrow hall. He discretizes
the problem by allowing the object’s size to be
slightly fuzzy, and shows that there is a polynomial
time algorithm to solve it in both E? and E3. If
the object can have several rigid components
connected at flexible joints, as in an articulated
arm, he gives a polynomial space algorithm, and
shows that the problem is P-space hard. Recently,
Reif and Storer [55] offered several new insights
into the shortest path problem.

Some useful references in the robotics field from
which this problem is derived follow. Paul [51]
considers modelling and trajectory calculation, and
in another paper [52] gives a good summary of
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robotics. Guibas and Yao [30] discuss a problem
related 1O collision avoidance. namely. copying
overlapping windows. Udupa [66] studies several
practical collision detection and avoidance prob-
lems using approximation techniques.
The first method for finding the minimal path was
given by Lozano-Perez and Wesley [45] who
presented an algorithm for a point moving between
S and G B, which is illustrated in Fig. 1. It
constructs a graph whose vertices arc S. G. and
all the vertices of the barriers. Its edges are those
straight lines between the vertices that do not pass
through a parrier. The algorithm simply finds @
minimal path 1n this graph between S and G. In
this case S— VsﬁszG. However, that can be
slow for large scenes because if the barriers have
n vertices, then the graph can have up to n? edges.
Determining which edges do not intersect a barrier
requires intersecting each one with all the barriers.
This will take §(n?) time using the polygon visibili-
ty algorithm of El Gindy and Avis [17]. Lozano-
Perez and Wesley [45] also present 4 method for
finding minimal paths for moving 2 polygonal
object around barriers. provided that the object
is allowed 10 translate but not rotate. This consists
. of shrinking the object to & point and simulta-
neously enlarging all the barriers. This reduces the
object minimal path problem to the point minimal
path problem which they know how to solve. The
method s illustrated in Fig. 2. Of course, this
reduction method can also be combined with any
other point minimal path algorithm. The Lozano-
perez and Wesley algorithm also provides an ap-
proximate answer i1 E? or when the object 1is al-
lowed to rotate.
Lozano-Perez [43, 44] then presents the * configu-
ration space” approach whereby a problem in d
dimensions, where an object is allowed to rotate
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Fig. 1. Finding 2 minimal path by constructing @ graph with
edges between all pairs of visible vertices
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to avoid barriers. is converted to another problem
ind(d+1)/2 dimensions where the object can only
translate. He presents approximation techniques
for solving the new problem. The configuration
space approach works as follows. An object in B
that can translate and rotate has three degrees of
freedom, X. Vs and 6. The legal values of these
are constraif d by the barriers in the scene. We
could also consider X, V. and ¢ to be three
Cartesian coordinates of a point that must move
while avoiding some barriers in E3. and then use
an E3 minimal path algorithm. There are two prob-
lems with this approach. First. the straight sided
barriers in E* become curved E® barriers. with
curves involving trigonometrical functions and sec-
ond, if Sand G specify just the position and not
the orientation of the object in E2. then they will
map into lines in B2

Sharir and Schorr [65] mention many useful results
on the nature of minimal paths on & convex po-
lyhedron with n vertices and a fixed point on it.
For example. they show that the polyhedron can
be preprocessed in T=0(n"1og n) to produce 2
data structure taking O(n*) space with the help
of which one can find in O(n) time the minimal
path along the surface of the polyhedron from a
new point 10 the fixed point. However, 10 arrive
at this result they employ extremely complex data
structures.

Brooks [8] solves the path planning problem using
a good representation of free space. Like Reif, Do-
nald [14] considers the complexity of path plan-

Expanded
Qbstacle

Qriginal Obstacles

~ .
P Opiee!

Fig. 2. Shrinking the object to @ point while expanding the
obstacles to maintain the same minimal path
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ning and automated structural design problems.
Hopcroft et al. [31] deal with a more complex
problem. namely, the complexity of motion plan-
ning for multiple independent objects and prove
that the general problem is P-space hard. Lee and
Preparata [36] treat the specific problem of recti-
linear barriers instead of general barriers and give
an efficient method. Although discovered
independently. their method closely resembles the
method summarized here and by Frankhn [21].
O’Dunlaing and Yap [48] consider the motion
planning problem for a disc and give a Voronoi-
based solution. A recent work by O'Rourke et al.
[49] also contains results on minimal paths on
polyhedral surfaces. Finally, in a series of highly
interesting papers [58-62] based on algebraic and
differential topology, Schwartz, Sharir, and Ariel-
Sheffi solve several instances of what they call, the
“Piano Mover’s™ problem.

Location of a point
in a plane partition

Once we have preprocessed the scene for a given
source S and barriers, for each goal G we must
determine in which region it is. There are various
algorithms, all of which however, are for planar
graphs with straight edges. Lee and Preparata [35]
present an algorithm that, after @(nlogn)
preprocessing time, requires 6 (log” n) search time.
It divides the graph into an ordered list of mono-
tonic chains of the edges of the graph. The vertices
of each chain are monotonically increasing in ).
If one chain is to the left of another in the list
and we cut the chains with any scan line (y =con-
stant), then the first chain does not intersect the
scan line to the right of the second. Each edge
of the graph. except some of the exterior ones, is
used in one or more chains. A point is located by
doing a binary search to find which two chains it
lies between. Each step of that search requires de-
termining which side of a given chain a point lies
on; this requires a binary search of that chain.

Figure 3 illustrates this method for a graph with
eight regions. The first level chain (the heavy solid
line) separates it into two subgraphs of four
regions each. Each of the two second-level chains
(medium solid lines) separates one of those subgra-
phs into two smaller subgraphs of two regions
each, while each of the four third-level chains (light
solid lines) separates one of these four subgraphs
into two individual regions. The dotted lines repre-

136

sent three exterior edges that were not used in any
chain. Note that a given edge of this graph can
be used by as many as log # different chains.

Lee and Yang [37]. and Lee and Drysdale [34]
summarize various point-location nethods includ-
ing one with a #(log ) search time, while Shamos
[63] and Brown [9. 10] also summarize various
ways. Lipton and Tarjan [41, 42] describe another
brilliant method with far-reaching consequences.
Theirs is very complex and probably of only theo-
retical interest, but has 8(log n) search time after
an impressive Q(n) preprocessing time. Also the
existence of such a method with linear preprocess-
ing time may be a clue to more practical efficient
algorithms. Kirkpatrick [33] gives an algorithm
that is based on triangulating the planar graph in
preprocessing time 7=0(nlogn) to give a fast
search time of 7=0(log n).

Most of the algorithms mentioned above that have
a binary search time of #(log #) time can be im-
proved by using an interpolation search instead
[53]. This requires first. that the probability distri-
bution of the ordered list being searched be either
known or bounded in the sense that the ratio of
the probabilities of two elements occurring does
not increase without limit as the set size increases.
and second, that the elements are not correlated
in certain ways. In return, the search can be con-
ducted in expected d(log log n) time. Interpolation
search differs from binary search in that the list
is probed at the interpolated element’s expected
location instead of at the middle. It is noted how-
ever that both Kirkpatrick’s algorithm, and Lipton

— 2" ) Level chain
= 3rL‘!
- - - Other edges

Fig. 3. A planar graph and a set of chains derived from it
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and Tarian’s algorithm decompose the planar
point location problem in a very rigid way and
make the interpolation search quite difficult to be
incorporated into their algorithms.

Since the borders of the regions are hyperbolae
in E? (or quartic surfaces in E?). we need an effi-
cient means of intersecting second or higher order
curves. In general we can reduce a system of two
second order equations in x and y to one fourth
order equation. which we can solve either iterati-
vely or with the closed form solution [3]. Levin
[38-40] presents & simpler closed form method that
uses second order parametric equations. It is also
possible Lo find efficient piecewise-linear approxi-
mations and intersect them instead. Franklin and
Akman [23] deal with partitioning E? in the pres-
ence of solid polygons SO that for a goal point
in a given region the sequence of obstacle edges
through which the shortest path passes is the same.
Converting the planar search algorithms to handle
hyperbolae is conceptually simple. In general, the
major use that is made of the edges’ straightness
is to tell which side of the line a point falls. This
operation can also be performed on a hyperbola
by substituting the point into the implicit equation
of the hyperbola and testing the sign of the result.
These planar search algorithms may also assume
that a graph edge is monotonic, which hyperbola
sections may not be. This can be remedied by split-
ting such hyperbolic edges into two parts at their
maxima and observing that the chains must con-
tinue upward from the maxima (so new edges must
be added). Finally, it should be remarked that
Kirkpatrick’'s algorithm also requires convexity of
the regions for triangulation to work properly.

\oronoi diagrams in the plane
with barriers

Now we are ready for the first new construction.
First, we will consider the Voronoi diagram on
just one point, initially with one barrier, then with
more. Since the barriers are assumed to consist
of straight line segments, the partition of the plane
caused by all the barriers will be some composition
of the partition caused by one line segment. The
general case is shown in Fig. 4. Here we have a
source S and an barrier line 4 from A4 to B. The
distances from S to A4 and B are |SA4| and |SB],
respectively. The partition has three regions Ry,

Visual —
DI

R;. Rs separated Dy the semi-infinite lines di. /-
and ¢,. Here 04 and o, are the “shadow lines”
of 4 and B respectively, and p. the “ridge line™.
is a section of a hyperbola. A general point P on
p can be reached equally quickly from S by going
around A or around B. For the minimal path that
bends at A (or B) the contact lists is (S. 4) [or
(S. B)] and the legs are (SA4. AP) [or (SB. BP)].
Accordingly.

d(P)=length of minimum path from Sto P
:\SA|+\AP[:1SBl+\BP\

so that
1AP|—-lBPl=lSBl—lSAl=Conslam=('

This is the equation of a hyperbola with foci at
Aand B. If £ 1s horizontal, then as p approaches
infinity, this hyperbola tends toward a straight line
with slope

—(|AB12 =D e, if ¢>0

Some examples of scenes with multiple barriers are
shown in Figs. 5 and 6. These were produced by
Verrilli [68] using an interactive graphics program
that he implemented to simulate the one source
— multiple goals Voronoi diagrams with barriers
[21]. Each region hasan™ associated vertex” which
is the closest point of that region to S. and is also
the last contact vertex before G on the minimal
path to any goal G in the region. These associated
vertices are either endpoints of the barrier lines
(**barrier vertices ™), or the source =

Since these associated vertices are points of the
plane in their own right. each of them is contained
in some region. Since this region has its OWn ass0-

Fig. 4. The general partition caused by one obstruction line.

causing & hyperbolic boundary
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Fig. 6. Another scene with multiple
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ciated vertex, which is different from the vertex
unless we are at S, we will get a chain of vertices
from the source to the goal. This is precisely the
list of contact vertices in the shortest path from
S to G. Following our notation for Voronoi
regions, we will represent regions with the letter
. Thus region w(¥) has associated vertex V.

This property of regions’ associated vertices being
in other regions also shows us the form of the
planar graph. Consider Fig. 7, which shows one
end of a barrier, 4, with its barrier vertex, V. V
is in region (/) whose associated vertex is U.
There must be a shadow line, o, separating region
w(V) from w(U), that will be the extension of the
straight line UV. ¢ will continue either until it
intersects some other line in the graph or to infi-
nity.

It is impossible for one region to have two different
shadow lines as its borders since each shadow line
has an associated vertex and one region cannot
have two associated vertices, which would imply
two optimal paths. In this case, there will be a
ridge line that separates the original region into
two smaller regions depending on which way the
optimal path should go from each point in the
original region. As illustrated in Fig. 8, there are
two equal optimal paths from each point on the
ridge line. A ridge line will start from a barrier
at one edge of the region and continue until it
intersects another line, if ever.

It is not necessary for the two associated vertices
of a ridge line to be barrier vertices of the same
barrier (Fig. 8). Here the ridge line will be an
hyperbola with foci at the associated vertices of
its two adjacent regions.

If a shadow or ridge line does not extend to infin-
ity, it may meet another line such as a barrier,

-
wlul
A
v
w(v)
o
Fig. 7. The origin of a shadow line

.
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or another ridge or shadow line. Several examples
of this are shown in Fig. 5 and 6. A line that hits
a barrier simply stops. However, if two lines, each
a ridge or shadow line, meet, then they both stop
and a new ridge line starts from that point. See
Fig. 9 where p, and p, meet at P. They separate
regions w(A) and w(B), and w(B) and w(C). re-
spectively. Note that p, and p, must be edges of
the same region if they are to meet. Region w(B)
must end at P since below it, it is faster to get
to the source via A or C. In fact, a goal G that
is below P and to the right of p, would find it
faster to go via B than via 4. However since G
is to the right of p,, it must also be to the right
of p,. and so it would be even faster to go via
C and then D. Thus «(B) must terminate at P.
The new line p; will separate w(A) from w(C) and
will be the locus of points with two equal optimal
paths, via 4 or C. The foci of the hyperbola p;
will be 4 and C.

Multiple sources and barriers

Given the Voronoi diagram with one source and
multiple barriers, the next generalization is to mul-
tiple sources. A special case of this, with no bar-
riers, will be the traditional Voronoi diagram. The
diagram for many source points and barriers must
continue to provide the shortest path in addition
to identifying the closest source.

In the single source case, ridge lines were necessary
because one region could not have two associated
vertices. Remembering that a source is the asso-
ciated vertex for the region from which paths from
the goal go straight to the source, multiple sources
may cause some region to have two associated
vertices, and so it will need a new ridge line to
partition it. The only generalization is that this
ridge line might never touch a barrier, but might
begin and end at intersections with other ridge
lines. This is the case if there are no barriers at
all.

Figure 10 is an example of two sources, S, and
S,, and a barrier, A=AB. If the barrier were
absent, then the Voronoi diagram would be the
infinite perpendicular bisector of S;.S,. However.
A means that some points to the right of the
bisector are now closer to §;. In fact, parts of
the perpendicular bisector remain as the ridge lines
p, and p,, but now there are two shadow lines
and three more ridge lines in between. From point

139



— MNisual
Computer

C there are three minimal paths with contact lists 1.
§-C. S,—A4-C,and S,—B-C.

As the next level in complexity, the polygonal bar-
riers are handled as follows. A polygonal barrier
1s more than just the set of its edges. Figure 11
shows the diagrams resulting from two adjacent
barriers. 4, and 4, in the case where we either
can (Fig. 11a) or cannot (Fig. 11b) travel between
4, and 4,. However, the modification to the dia-
gram is obvious: if 4, and 4, adjoin at point P

o

with no passage between them. then if P is in 3.

region w(S), a shadow line is drawn from P only
if it would be on the same side of i, and /, as

is S. This is not the case in Fig. 11b, but is in 4.

Eig. 12.
The concept of polygonal barriers can be extended
to mazes as is shown in Fig. 13. If there is more

than one path to S. we will find the shortest path 5.

from every point in the maze.
We will close our discussion of Voronoi diagrams
with barriers with a general inductive method for

constructing the partition of a plane: 6.

Initially we have no obstacles and one region
with the contact list (S) and visible source S.
We refer the reader to Fig. 14 throughout this
discussion.

. To add an obstruction 4= 4B to an existing par-

tition, assume without loss of generality that A4
and B are in regions R, and R, with visible
sources S; and S,, respectively. Assume that the
two new regions with visible sources 4 and B
are called R; and R,. respectively.

If R, differs from R,, any boundary lines that
intersect A stop there. In Fig. 14, there are three
such lines.

Create a new straight boundary line, B, . starting
from A that is an extension of S, 4. and another.
B, extending from B that is an extension of
8,8,

Create a new hyperbolic boundary line. B,.
starting at a point on 1 and going down. If P
is a general point on it, then we have |AP|-
|BP|=d(B)—d(A4).

B, may eventually cut a boundary line, B,, of

Choecse & command HEARDZOPY

|

FMPA
1
1 3
SOURCE
LINE
cuT
SOIN
FMINPATH
CLERR
GRID Fig. 8. The vertices adjacent to a
ridge line are not always on the same
SNAP .
barrier

140



“Nisual /7

S., w(C)
S w(B)
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\ e
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Fig. 9. Two intersecting ridge lines in a scene with two bar-
riers

Fig. 10. Two sources and one barrier

Fig. 11a, b. Two adjacent barrier lines with paths allowed
(a) or not allowed (b) between them

Lomput

i4

Fig. 12. Two adjacent barriers where the shadow line of
their common vertex is on the same side of them as the

source
Fig. 13. Multiple barriers forming a maze

Fig. 14. How a general new obstruction causes new bound-
ary lines to form
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R,. Assume that the region on the other side
of B, is Rs. At this point, B,, B., and R, stop
and B,. which separates R; and Rs which are
now adjacent. starts. Let the visible source of
R. be S;. If P is a general point on B, then
we have |Ss P'|—| AP |=d(4)—d(Ss).

7. Repeat step 2 for each obstruction.

Minimal paths on a polyhedron:
instances

Now we will describe our second new construction.
Let P be a convex polyhedron and § and G two
points in the Euclidean space E®. Assume that
S.GeExt(P)uOn(P) throughout this paper.
[On(P), Int(P), and Ext(P) denote the surface, the
interior points, and the exterior points of P, respec-
tively.] In the sequel, we first present algorithms
to compute the minimum-length S-to-G (or vice
versa) paths which do not interfere with P (i.e,
at most touch P but never intersect it) for the fol-
lowing two instances (FP is an abbreviation for
“Findpath™ — a name used mostly in artificial
intelligence [47] for this kind of path planning
problems):

[FP1] S.GeOn(P) and both points are given;
and

[FP2] S and/or GeExt(P) and both points are
given.

Finally, after these preparations, as a third and
more interesting instance, we solve the following
single source — multiple goals version. Let S be
fixed and G be varied inside the workspace. This
corresponds to a manipulator consuming a pile of
objects by continuously moving them to different
locations in the scene. Clearly, the symmetrical
case of a manipulator picking up objects from sev-
eral piles in order to assemble them in a fixed loca-
tion is transformable to this instance by simply
trading the roles of S and G. Assume that S and
the particular face F; of P on which G is guar-
anteed to be located are given. It is emphasized
that the exact location of G on F is not yet known.
Clearly, the aim is to do some preprocessing using
this limited information (i.e., P, S, and F) so as
to compute the S-to-G minimal paths efficiently
for specified * query’” points which will generically
be denoted by G. In our terminology:
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[FP3] S.GeOn(P); Sis given while G is not (but
F,, the face of P that G will belong, is known).
We are allowed to preprocess P to quickly answer
later queries that specify many GeFg and ask for
the S-to-G minimal paths.

Parts of the following material can also be found
in Franklin and Akman [22].

Solution of FP1

In the following, o, &, and &, denote the number
of vertices, edges, and faces of P, respectively, We
reserve the terms “edge’, “vertex”, and "path™
only for polygons and polyhedra; for graphs we
use the less common terms “link”, “node™. and
“sequence” in order to avoid potential confusions
[12]. For polyhedral definitions, we follow Grun-
baum [28].

Throughout this paper, we assume that the line
segment SG is not the shortest path since there
is a fast algorithm due to Chazelle [11] to detect
this, that is, to intersect a line segment with a
convex polyhedron P. In fact, Chazelle’s algorithm
first detects whether a given line A intersects P.
The output is data giving the common point(s)
of 4 and P if they do intersect or null if they are
disjoint. The algorithm works in time O(log® %)
and requires a special representation of P which
demands O(a3) operations to reach from its stan-
dard representation.

In the following, we summarize a simple but useful
fact about the shortest path on a dihedral angle.
This lemma can be found in various places includ-
ing a book by Lyusternik [46] on variational calcu-
lus and many mathematical puzzle books [6, 13].

Lemma (Dihedral principle). If S and G are on
different faces of a dihedral angle D, then the
shortest path between them is SX U XG where X
is a point on the common line CC' of the faces such
that < SXC= < C' XG where *“ < " denotes a planar
angle.

Proof. Trivial. Algorithmicly, X is found as fol-
lows. Rotate G about CC’ until it touches the plane
of S (but specifically to the hale-plane described
by CC’ not including S). Thus G is transformed
to G’. This is called a “development™ of D into
the plane. Draw SG’ and intersect it with CC” to
find X. When we fold the faces back to their origi-



nal position the minimal path is placed into three
dimensions on D again. :
To solve FP1 we will develop a partly geometrical
and partly graph—theoretical machinery. By defini-
tion. a polyhedron is & figure in space formed by
a finite number of polygons situated in a certain
mutual relationship. This can be represented by
a system of polygons (“evolvent™ or “planar po-
lygonal schema ) in the plane as shown by Efimov
[16], as well as Frechet and Fan [24].
Given a polyhedron P. associate a polygon with
each of its faces, this polygon being subject to the
single condition of having the same metrical form
as the associated face of P. We thus obtain a finite
number of polygons in the plane each of which
is separated from the others. We will couple the
edges of these polygons in pairs in such a way
that two “coupled ™ edges in the plane lead to the
same edge of P. Now denote each coupled edge
in the plane by the same letter. This does not yet
suffice to describe the mutual relationship of the
faces of P. To make it precise, each edge in the
plane must be oriented by placing an “arrow’ on
it in an arbitrary sense. except that for two coupled
edges the heads of the two arrows on them coincide
when they are identified in forming the
corresponding edge of P.
The evolvent A of P, obtained as described above,
defines the intrinsic geometry of P in the sense
that for a given A it is possible to determine the
minimal paths between two points on P [5]. In
our solution of FP1, A is the main geometrical
tool. It is noted that A satisfies the following condi-
tions:

1) The coupling (“gluing™ in Aleksandrov’s ter-
minology) of polygons may occur either at
edges or vertices

II) If two polygons F, and F; are glued at vertex
¢, then they are either glued together along
edges containing v Of there exists a sequence
of polygons, starting at F; and ending at F,
which are glued to one another along edges
containing v

[11) Each edge is glued to exactly one edge

IV) Any two polygons are joined by a chain of
polygons glued along edges (the “ connecti-
vity” condition)

In addition to A, we need another simple but useful
tool. Define the “face adjacency »* (or shortly, face)
graph @=(V. E) as an undirected graph with unit
link length where V= {v|F, is a face of P} and

E={(x1,v2)|F,, and F,, are adjacent along an
edge of P}.

Let ¢ be a minimal path on P from S to G. The
faces that ¢ touches while going from S to G define
the *face visit sequence”, Fs, ..., Fg. where each
face in this sequence is adjacent to its preceding
and following neighbors.

Lemma. A face visit sequence in Q associated with

a minimal path on P 15 simple (loop-free).

Proof. After recalling the fact that each face of
P is also convex, one would further shorten the
portion(s) of the path corresponding to the cyclic
sequence(s). But then the given path is not mini-
mal.

Lemma. There may be O(n') simple sequences be-
tween two specified nodes of an undirected graph
with n nodes.

Proof. In the worst-case the graph is complete.
(But see the argument below.)

In practice, things are more encouraging than what
is predicted by the above lemma. The number of
links in Q is much less than the number of links
in a complete graph with the same number of
nodes. This is due to the observation that the sur-
face of a convex polyhedron has the structure of
a planar graph; hence it can have only a linearly
growing number of links in terms of its nodes. This
O(n) factor of reduction in the number of links
renders less freedom in moving from one node to
another and helps reduce the number of simple
sequences considerably.

Before we present our algorithm for FP1 we em-
phasize that Aisa geometrical data structure. Hence
it is possible, for instance, to obtain from A such
information as “F,; and Fy4 share edge e, or " Fs
and F, are disjoint.™ With these examples, a con-
venient internal representation for storing an
evolvent should be evident (cf. Abelson and
DiSessa [2]). On the other hand, © contains only
topological information; that is, it is less informa-
tive of shape. (A parallelepiped has the same £
as a cube.) Normally, an adjacency list structure
is the best representation scheme for storing £2.

After above preparations we can now present our
algorithm for FP1:
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Algorithm A1

1. Given S and G. find the faces F; and F; holding
them. Assume that they are different; otherwise
we are finished with path SG.

. Mark these two faces in Q and enumerate all
simple sequences between these nodes in any
order.

3. For each sequence (which may be thought of
as a face visit sequence) compute the associated
development of the relevant faces. This is ac-
complished using the information provided by
A.

4. For each development compute the minimal
path between the images of S and G and finally
choose the smallest one(s) among them.

In Figs. 15-17 we demonstrate this algorithm on

a simple polyhedron — a cube. Figure 15 depicts

the evolvent and the face graph of the given cube,

Fig. 16 lists the first few of the simple face visit

o

corresponding developments for those sequences
given in Fig. 16. .

To the best of our knowledge, counting the number
of simple sequences between two nodes of a graph
is a difficult problem. QOur belief is due to the fact
that given graph ¢ = (V. E), | V|=n, | E|=m. length
[(e)eZ™ for each eeE. specified nodes S. GeV.
and positive integers b and &, it is stated by Garey
and Johnson [25] that the problem **Are there k
or more distinct simple paths from S to G in ¢.
each having total length 4 or less?" is NP-hard.
Yet, this problem can be solved in pseudo-polyno-
mial time (polynomial in n, k and log 4) and hence
in polynomial time for any fixed value of k. Al-
though this problem is not known to be in NP.
the corresponding enumeration problem is # P-
complete as proved by Valiant [67]. % P is the
class of functions that can be computed by count-
ing Turing machines of polynomial time com-
plexity. This class has computationally equivalent

sequences, and finally, Fig. 17 shows the counting problems that are at least as difficult as
i F3 Se
1
iR
. (Note: G is on Fg) Face graph, &
f5=3 ond . =5
o e e it
1
I
: / K Mo Its evolvent, A
| 1/ T \\\
I Pl . N,
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A sl . - th- i
: ‘r "; Fn Fa 1| length-2 simple
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®€@}@ sequences 9
& —@—E0®
Fig. 15. The evolvent and face graph of a cube. The evolvent Fig. 16. First few simple face visit sequences on the face
is a geometric structure whereas the face graph is topologic graph of the cube depicted in Fig. 15
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the NP-complete problems. Valiant's # P-com-
pleteness proof is for the following:

Problem . S-T paths (i.c.. self-avoiding walks) in
graphs.

Undirected ¢ (V. E) and S. TeV.
Number of paths from S to T that visit
every node at most once.

Input:
Qutpul:

Basically, the proof consists of showing that if this
problem were not 4 P-complete then counting the
number of Hamiltonian circuits in a graph would
be a polynomial process. It is emphasized that
4 P-completeness of S-T paths still holds even
when ¢ is planar.

In a paper by Yen [69] an O (kn®) time algorithm
is given to enumerate the first &k simple sequences
in increasing path length. Recently. Katoh etal.
[32] gave a new improved algorithm which works
in time O (kf (n, m)) if the shortest sequences from
one node to all the other nodes are obtained in
f(n, m) time. Since f(n.m) is at most min[0(n?),

Fig. 17. These face developments correspond to those simple
face visit sequences given in Fig. 16

f(m log n)] this algorithm is more efficient than
Yen's.

Solution of FP2

When S andjor G are off a convex polyhedron
we obtain the instance FP2. In this case. it is still
possible to apply the method of solution summa-
rized in the previous section but only after a simple
transformation of P to another polyhedron P’
which now has § and G necessarily on its surface.
The transformation is given as follows:

Algorithm A2

1. Compute the two visible outlines Zg and Z; of
P from the viewpoints S and G, respectively.
These are generally nonplanar polygons which
have as edges some edges of P.

2. Construct a new polyhedron P’ which is the
combination of three polyhedra. P =0sJPU
Q- Here Qs 1s the pyramid having S as apex
and Z as its base outline, and Qg is the pyramid
having G as apex and Zg as its base outline.
Note that these pyramids have generally concave
bases consisting of the visible faces of P from
S and G, respectively.

The correctness of Algorithm A2 follows from the

following properties:

Lemma. The planar projections of Zg and Zg are
convex polygons.

Proof. Due to fact that a convex polyhedron casts
a convex shadow when illuminated by a point
source.

Lemma. P’ is also a convex polyhedron.

Proof. Take two points X and ¥ inside P If
Xelnt(Qs) and Yelnt(P) then XY is always inside
QsuPforY will always be inside the infinite pyra-
mid originating from S. A similar argument shows
that the union of Qg and P is also convex. The
only unproved case 18 when XeQg and YeQg. Let
us check the dihedral angles of P’ where Qg and
P, and Qg and P are joined. Clearly. those angles
are all nonreflex implying that XY must be totally
contained inside P’

145



% =
Visial
Lompaier

The following result shows that after the problem-
reduction step accomplished by Algorithm A2 (ie.,
the computation of P’ from P) the complexity of
this instance is the same as with FP1.

Lemma. Size (P')=0[Size (P)].

Proof. The “size” of a polyhedron can be defined
as the number of its vertices or edges or faces
depending on choice. In the case of a convex
polyhedron they are all asymptotically equivalent
since a convex polyhedron can be embedded in
the plane as a graph and since «;, is at most equal
to 3¢, —6 in a planar graph. Hence, let us choose
%, as the size measure without loss of generality.
From the previous lemma, Qg and Q; may contrib-
ute &(o,) new edges in the worst-case.

How fast can we compute Zg and Z;? Below we
summarize the computation of Zg; Z; is computed
similarly. Find a point C; inside every face of P:
this can be done in O(7) time per point. Using
Chazelle's method, compute the intersections of P
and.  8€,;  i=d....0.  If the intersection
corresponding to a particular C; is null then F,
is visible from S otherwise it is obstructed by other
faces of P. In this manner all visible faces of P

P é
S,

@B visible outline

visible lines from § visible lines from G

a pyramid

Fig. 18. The two pyramids are computed after a visibility
computation from viewpoints S and G. In this case the bases
of the pyramids are hexagonal
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from S are found. This operation clearly takes
O (2, log? o), or equivalently O (o, log? o) time.
To compute Z¢ from this set of visible faces, we
make a list consisting of the edges of these faces.
Any edge which appears twice in this list cannot
belong to Z. Thus, the edges of Z; are determined
In O(a, log ap) time via sorting this list and elimi-
nating both elements of duplicate pairs. To get Z;
with ordered edges from this unordered set, take
any point Q inside any of the visible faces and
sort the vertices of this set in angular order about
0. As soon as we find Zg, we know all the faces
of Qs.

In Fig. 18, we show the problem reduction step
for a simple scene. After this reduction P’ must
be submitted to Algorithm Al summarized in the
preceding section.

Solution of FP3

The methods outlined in the last two sections are
used in this case. To solve FP3, we follow a Voro-
noi-based strategy [29]. We want to partition the
face F; into subregions via a planar subdivision
made of straight edges such that if a query point
G is discovered to be belonging to a particular
subregion of this subdivision, it must be possible
to list the face visit sequence that should be taken
by an S-to-G minimal path. The following algo-
rithm accomplishes this:

Algorithm A3
|. Preprocessing

1. Develop into the plane of F, all simple visit
sequences in Q between nodes Fg (the face of P
holding S) and F; using A. At the end of this
process. one obtains, using the Dihedral princi-
ple, a set of points in the plane which are the
“images” of S under given visit sequences.

2. Store with each image point, the visit sequence
used to arrive it.

3. Using standard algorithms construct the Voro-
noi diagram /" which has these images as Voro-
noi centers.

4. “Chp™ I against F; This simply means [18]
finding the subset I of I included within the
polygon Fy.



II. Querying

1. Given a new query point G, first make sure that
GeFg.

2. Using standard point location algorithms locate
the subregion R including G in subdivision /™.
3. Using the stored sequence in the Voronoi center

corresponding to R develop the faces specified
by this sequence and find the minimal path with
straightforward application of the Dihedral
principle.
Once we preprocess the given scene for a given
S and Fg, for each goal G we must determine to
which region of the subdivision /™ it belongs. As-
sume that /™ has y edges. This can be done using
any of the point-location algorithms mentioned in
the previous sections directly.
The size y of I depends on two things: the number
of simple visit sequences between Fg and F; in
Q, and the shape and relative location of Fg. If
F; is very large it will probably include most of
I If it is almost coincident with the most crowded
parts of I then /™ will again have many subregions.
Similarly, if there are many visit sequences then
the Voronoi diagram I” will have many edges. In
general, the complexity of constructing I on the
surface of P for many specified source points will
depend on the average number of regions that each
face is partitioned into.
In Fig. 19, we demonstrate this preprocessing
method for a cube. The lists written next to each
image of S in this figure specify the order of un-
folding applied to arrive that point. Not all images
of S are shown. For example, the simple sequences
(3,4,5,2,1,6) and (3, 4, 5, 1, 2, 6) are missing,
but they do not really alter anything. Notice that
if G is inside the subregion with vertical hatching
applied then the minimal path is via the unfolding
of simple sequence (3, 2, 6). On the other hand,
it is given via the unfolding of (3, 6) when G is
inside the horizontally hatched subregion.
A dynamizing technique which would allow good
insertion time for an incoming point in the Voro-
noi diagram proves very useful in this context.
Thus, we start with only a few image points (com-
monly corresponding to the first few short simple
sequences in the face graph) and easily work our
way to an incomplete Voronoi diagram. When we
want to see the effect of another image point not
yet tried we use a dynamic data structure [57] to
insert it. In a recent paper by Gowda et al. [27],
it is proved that this is achievable in O(y) time

Nisual —
C.omputer

if the Voronoi diagram has p points prior to
insertion.

Finally, the solution of FP3 offers a new and
interesting question regarding Voronoi diagrams.
Given y points and a polygon P in the plane, how
quickly can one find the subset of the Voronoi
diagram on these y points lying inside P? In other
words, can one gain anything (i.e., save unneces-
sary computations which are wasted by the clip-
ping process in Algorithm A3) by promising to
look at the diagram only through a window? Al-
though an adversary can always force a worst-case
we conjecture that on the average this with take
time less than O(ylog y) as long as the convex
hull of these points and P are not close to each
other under some reasonable distance measure.

P 2 S is given and G is not
e| given But we are told
3 that G is on face 3.
That is:
l Fs=6 and F =3
L =
1
13,256
] a0
e el e
| 1 i I I
13,2,5,1,6) (3,5,2,6)1 1"3,2,18)
| ol o I 1o I
G sl s mimmet s = =i
(N 1 I | I o I
(32548) | i 1328
I G| 1 ! I I
pBsuee, 1 AR
1 o 7 ; 1 o |
113,518} i = (360 1
| 1 | = I
R A e -—=d
| o | 1 1 1 1
113,5,,4.8} | I | {3486
| | I | e
e e
1_o 1 1 1 1
:l3v5v4-‘~53|(3,5.4.su 113,4,,6) 1
I o i -3
gl Shos s S
Fig. 19. Voronoi partitioning on face 3 of a cube for the
specified location of S. Only the clipped Voronoi diagram
is shown

Complexity of the diagrams

The complexity of the diagrams in the plane with
barriers, as measured by the number of new points
and lines added, is linear in the number of sources
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plus barrier edges. In fact. the number of regions
is equal to the total number of associated vertices,
which is the number of sources plus twice the
number of barrier lines. Since every new vertex
(at the intersection of new ridge or shadow lines)
has three adjacent lines, and since this is a planar
graph, albeit with some edges extending to infinity,
then the number of vertices, edges, and regions
are each linearly related to the other. Thus the
graph is of linear complexity in the size of the
input.

Although we do not yet have an efficient-algorithm
for constructing the graph. one appears to be pos-
sible along these lines: Assume a wave front start-
ing from each source. As it hits a barrier vertex,
label that vertex, start a shadow line, and *diff-
ract” part of the wave front behind the barrier.
If two wave fronts meet, then start a ridge line.
If two lines, which means three wave fronts, meet,
then stop one wave front and start one new ridge
line. Continue until all barrier vertices have been
reached, and the remaining lines are heading to-
wards infinity at angles such that they will never
intersect each other.

The key to the above algorithm’s efficiency lies
in the choice of data structures since there may
be many possible objects that each might be
reached next by any of several wave fronts. Avoid-
ing a quadratic time requires a spatial data struc-
ture such as Drysdale’s generalized Voronoi diag-
rams, modified to be dynamic. Then as we insert
new elements, we will immediately know all the
relevant adjacency relations.

The complexity of constructing Voronoi diagrams
on the surface of a polyhedron depends on the
average number of regions that each face is parti-
tioned into. It is suspected that this small in pract-
ice, although an adversary could find some very
large cases.

Summary

We have demonstrated two extensions of the Voro-
noi diagram to handle either opaque barriers in
the plane, or the surface of a convex polyhedron.
These constructions are useful in the single source
— multiple goals problem with barriers in robotics,
and in finding minimal paths in E3 in the presence
of impenetrable polyhedral obstructions.
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