
Exactly computing map overlays using rational numbers

Salles V. G. Maghalães and W Randolph Franklin

Rensselaer Polytechnic Institute, Troy NY

Oct 2014

We present an algorithm for overlaying two maps that is not hindered by roundoff

errors and the resulting topological impossibilities. From two input maps

containing polygons separated by polyline edges, the overlay is a map, each of

whose polygons is the intersection of a polygon from each input map. A roundoff

error caused by the finite precision of floating point numbers can cause a point to

be computed to be on the wrong side of an edge. That can cause an edge

intersection to be missed, or the point to be computed to be in the wrong polygon,

leading to a topological inconsistency in the output map. This gets worse when

the inputs are bigger, or have slivers. We completely avoid this problem by

representing coordinates as rational numbers.

Now, intersections have no roundoff errors. Rational numbers are well known to

computer scientists, and packages exist, but there are challenges, such as their

speed and the fact that the packages might not have been used on such large

datasets. Our solution, that uses a uniform grid to accelerate the computation, is

very efficient and, as tests showed, it can overlay maps faster than the widely

used GRASS GIS.

Keywords: map overlay; computational geometry; algorithms

Introduction

With the recent advances in GIS technologies, a huge amount of high quality geographical data has

become available. Thus, it is necessary to develop efficient and precise algorithms to perform operations

in these data. One of the most important kinds of operation is the overlay of maps, where two vectorial

maps are superimposed and a resulting map containing the intersections of the polygons from the input

data is created. This operation has several applications like, for example, overlaying a map containing

counties boundaries with a map containing watershed boundaries, which would result in a map containing

the regions of each county that drain into the different watersheds.

A particular challenge in the overlay problem are the topological impossibilities that are often

created due to roundoff errors caused by the finite precision of floating point numbers stored in

computers. These problems are even worse when big amounts of data are processed and when input edges

almost coincide. It is important to notice that edges coincidence is not rare in real maps. For example,

borders of counties are frequently defined based on natural features such as rivers. Thus, edges from a

county map may coincide with edges in a soil map, where rivers form borders for different kinds of soil.

This paper presents Rat-overlay, an algorithm that uses rational numbers to perform the exact

map overlay, completely avoiding roundoff errors. Using rational number ensures that intersections are

computed exactly and avoids the formation of slivers in the map. However, there is a challenge for using

these kinds of numbers, since operations with rationals present a big overhead if compared against

hardware-implemented floating point operations. Also, the result of an addition or multiplication has

about the number of digits of the two operands combined and, thus, consecutively performing

mathematical operations may require a big amount of space and computation. Therefore, operations such

as accumulating the area of a polygon are not efficient with rational numbers.

A uniform grid is used to efficiently compute the edge intersections, reducing the amount of

operations performed with the rational numbers. The edges and vertices resulting from the intersections

are, then, classified and, finally, the overlay areas and output polygons are computed. Also, to better use

the computing power of current multiprocessors, Rat-overlay was parallelized using OpenMP API.

As presented in the tests, Rat-overlay was able to efficiently compute the exact overlay of maps.

In fact, the use of parallel programming allowed Rat-overlay to process maps faster than the approximate

overlay algorithm available in GRASS GIS (GRASS Development Team 2014).

The Rat-overlay method

Map data format

In this work, each input map is represented as a planar graph where the edges represent the regions

boundaries and each region is labeled with an identification number. By convention, the exterior region is

represented by the identifier 0.

For simplicity, each sequence of adjacent edges that bounds two given regions is grouped in a

chain and each chain is labeled with the following information: (id,#edges,node0,node1,polleft,polright),

where id represents the unique identification number of the chain, #edges represents the number of edges

in the chain, node0 and node1 are identification numbers for each of the endpoints and polleft and polright

represents, respectively, the identification numbers of the polygons in the left and in the right side of the

chain. Each chain label is followed by #edges+1 coordinates of the vertices.

Observe that only the chains are explicitly stored in the map file. Also, it is important to mention

that a region may be composed of several polygons and, in this situation, the polygons representing the

same region have the same identification numbers. Figure 1 presents an example of a map composed of 2

regions (one of them is composed of two polygons) and the corresponding chains that are used to

represent this map.

Overlaying two maps

The first step of the algorithm consists in finding all the intersections between the edges of the first input

map with the edges of the other input map. As it will be explained in the next section, this computation is

accelerated using a uniform grid to reduce the amount of pair of edges tested for intersection.

Then, for each vertex of the input maps, the algorithm computes in which polygon of the other

map this vertex is located. This information will be used in the computation of the output polygons and of

their areas. As it will be explained later, this step of the algorithm is also accelerated using a uniform grid.

After locating the vertices, Rat-overlay computes the output polygons' areas. It is important to

mention that this step is not necessary for computing the resulting polygons and, as explained in Section

Using rational numbers, the areas are computed mainly for validating the correctness of the input and of

Rat-overlay. The areas are obtained using a strategy proposed by Franklin et. al (1994), that considers

that each polygon edge is divided in two directed ‘half-edges’ (each one ends in one endpoint of the

original edge) and uses these ‘half-edges’ to compute the areas of the polygons.

The basic idea is ‘that some properties, such as area and perimeter, can be calculated

independently for each half-edge and, then, summed’ (Franklin et. al 1994). Notice that in this step of

Rat-overlay, the output polygons were not computed yet: similarly to Franklin et al.'s algorithm, the area

of the output polygons are computed without explicitly computing the polygons. This is performed by

dividing the original edges in the intersections of the two maps and, then, accumulating the area of each

half-edge (derived from original edges or from divided edges) in the corresponding output polygon. Since

the areas do not need to be computed exactly (and, as mentioned later, this is usually infeasible), they are

computed and accumulated using primitive floating point numbers.

To compute the output polygons, each edge from the input maps is analyzed and the outputs

generated from these edges are computed. An input edge e may be classified in three different categories:

e is completely inside a polygon of the other map, e is not inside any polygon of the other map, e

intersects edges from the other map.

If an edge e does not intersect any other edge in the other input map, e may be completely inside

one polygon in the other map or completely outside the polygons of the other map. In the first situation, e

will be an edge of the output map and, in the other situation, e will not be in the output. Figure 2

illustrates these two situations: edge e is inside polygon 1 of the other map (represented by black edges)

and, thus, in the resulting map it will be in the boundary between the exterior polygon and the polygon

relative to the intersection of polygon 1 of one map with polygon 2 of the other one. Edge f, on the other

hand, is not inside any polygon of the map represented in black and, thus, it will not be in the output map.

To determine if e is inside a polygon in the other map, our algorithm checks in which polygon of

the other map one of the endpoints v of e is. If v is in polygon 0 (the outside of the map), e is completely

outside the other map. Otherwise e will be completely inside the other map.

If e=(u,w) intersects k ≥ 1 edges of the other map in points i1, i2, ..., ik, this will divide e in k+1

edges e1=(u, i1) , e2=(i1, i2), e3=(i2, i3), ... ek(ik-1, ik), ek+1=(ik, w). To determine which of these edges will be

in the output map, the midpoint mj of each edge ej is analyzed: if mj is outside a polygon of the other map,

the polygons in both sides of the corresponding edge ej will not intersect any polygon in the other map

and, thus, ej will not be in the output. Otherwise, if mj is inside a polygon p of the other map, ej will be in

the output map since the polygons in both sides of ej will intersect with p.

Figure 3 presents an example of situation where an edge e=(u,w) from one map (represented in

blue) intersects edges from another map (black) in several points (detached in red). The edge e2=(i2,i3)

resulting from the intersections has midpoint m2, that is inside polygon 2 of the other map. Since the

polygon in the right and left sides of e are, respectively, 6 and 0, the output polygon in the right side of e2

will correspond to the intersection of polygon 6 with 2 and the polygon in the left side of e2 will be the

‘outside’ polygon (created from the intersection of polygons 2 and 0). Edge e6=(i6,w), on the other hand,

will not be in the output map since its midpoint m6 is not inside any polygon of the other map and,

therefore, both of its sides will be outside of polygons in the resulting map.

Implementation details

As mentioned in the previous section, a uniform grid is used to accelerate some steps of the

algorithm. The basic idea, proposed by Franklin et al. (1989), is to create a N x M grid and superimpose

this grid with the two input maps such that all input edges are inside the grid. Then, the intersections can

be computed in each grid cell. The computation is accelerated because only pairs of edges that lie inside

one cell (or intersect it) need to be tested for intersection. In our implementation, the dimensions of the

grid are defined by the user.

Figure 4 presents an example where the intersections between map 1 and map 2 are computed

using a uniform grid with 4 x 7 cells. Notice that, during the computation of the intersections that lie in

the detached cell (in light red), only 3 edges from map 1 need to be tested for intersection with the only

edge of map 2 that is in this cell.

The algorithm to determine in which polygon of a given map a point p is located is also

implemented using a uniform grid. The basic idea is to find the lowest edge e that is above p and

intersects a vertical line l that crosses p. The polygon where p is located will be the polygon that is in

same the side of e as p.

Supposing p is in cell C of the uniform grid, the algorithm initially tries to find the closest edge

higher than p that crosses l. If there is no such an edge in C, this process is repeated in the next cells

higher than C. If neither C nor the other cells higher than C contains an edge that crosses l, then p is in

the ‘outside’ polygon (that is labeled 0). In the example in Figure 5, no edge in the cell C where p is

located and in the cell immediately above C crosses l and is above p. However, there are two edges in the

cell detached in red that crosses l. Since the edge e=(u,v) is the lowest of these edges, the algorithm

determines that p is in the polygon in the right side of e=(u,v).

Simulation of simplicity (Edelsbrunner and Mücke 1990) is used to avoid degenerate cases in the

computation of the intersections and, also, to break ties in the location of the vertices. The idea is that,

during the computations, the algorithm ‘pretend’ that the first input map is slightly below and to the left of

the second input map. By doing that, no edge from one map will coincide with edges from the other map

during the intersection computation.

Parallel implementation

The performance of Rat-overlay in parallel computers with shared-memory architecture was improved by

using OpenMP API. First, during the uniform grids creation, the edges from both methods are added in

parallel to the corresponding grids. Despite there is no data dependency in this processing, it is necessary

to use synchronization methods to ensure data consistency when the edges are inserted in the grid data

structure.

Also, all vertices of each map need to be located in the polygons of the other map to compute the

polygon areas and the output polygons. Since there is no data dependency in the processing of each

vertex, they are located in the other map in parallel.

Furthermore, the intersections are found in parallel: notice that the intersections are detected

independently in each cell from the uniform grid. Thus, these cells can be processed in parallel.

Finally, the output polygons are also computed in parallel. As explained previously, the input

edges are classified based on their intersections with edges in the other map and the output edges are

created based on this classification. Therefore, each input edge can be processed independently in

parallel.

Using rational numbers

Computing in the algebraic field of the rational numbers over the integers, where the integers are allowed

to grow as long as necessary, allows the traditional arithmetic operations, addition, subtraction,

multiplication, and division, to be computed exactly, with no roundoff error. The cost is that the number

of digits in the result of an operation is about equal to the sum of the numbers of digits in the two inputs.

E.g.,
214
433

+
659
781

=
214524814

338173
 . The inputs have 12 digits in all; the output has 12 digits.

Casting out common factors helps, but that is rare. E.g., we can cast out a common factor of two

when the numerator and denominator are both even, which occurs 1/4 of the time.

Ever longer numbers is not a problem when computing the sign of the determinant of a 3x3

matrix. That is the major part of determining whether or not two lines intersect. That is the operation

whose accuracy is critical in overlaying two maps to compute the output polygons. This is why it is

feasible to use rational numbers to overlay maps.

In contrast, computing the area of a polygon is an example of an operation that would not be

amenable to computing over the rationals. The area is a function of all the polygon's vertices. Therefore,

the number of digits in the area's numerator and denominator would be close to the sum of the numbers of

digits in all the polygon's vertices. Luckily, we do not need to know the polygons' exact areas. Indeed,

the only application of areas in our program is as a sanity check. The computed area is the sum of many

large numbers that are almost absolutely equal but have opposite signs. If any term is omitted, the

erroneously computed area will be very large, and with probability one-half, negative. The absence of

such obvious errors increases confidence that our program is correct.

Rational numbers are also not sufficient to exactly compute intersections of circles and straight

lines, because the result is usually an irrational number. If that were a concern, we could compute them

exactly by using the field of rational numbers extended by the square root operation. Here, numbers such

as
1+√ 2

√3−5
 can be represented exactly, and not as floating approximations. Tools such as the

Computational Geometry Algorithms Library (CGAL) and Mathematica can do this; but they are big and

slow.

Experimental results

To evaluate Rat-overlay, it was implemented in C++ using GMPXX (Granlund et al. 2014) as the

multiple precision arithmetic package, compiled with g++ 4.8.2 and tested in a machine with the

following configuration: dual Intel Xeon® E5-2687 processor (totaling 16 cores, that are able to run 32

threads using Intel Hyper-threading technology), 128 GiB of RAM memory and Linux Mint 17 operating

system. Unless otherwise stated, all tests with Rat-overlay were performed using its parallel version

configured to execute using 32 threads.

Tests were performed using two datasets from Brazil, distributed by IBGE (the Brazilian

geography agency) and two datasets from the United States, obtained from the United States Census and

National Atlas webpages. All these maps are distributed in shapefile format and, thus, they needed to be

converted to the format (that will be described later) used as input to Rat-overlay.

 BrSoil: Map representing different kinds of soils in Brazil. It contains 258,961 vertices, 5567

polygons and was obtained in IBGE's website (IBGE 2014a).
 BrCounty: Represents the Brazilian county subdivision. This map contains 342,738 vertices,

2959 polygons and was also downloaded from IBGE's website (IBGE 2014b).

 UsAquifers: Contains polygons representing the aquifers that supply water to the United States.

This dataset contains 195,276 vertices, 3552 polygons and was obtained in the National Atlas'

website (National Atlas 2014).
 UsCounty: Represents the county subdivision in the United States. The shapefile contains

3,648,726 vertices, 3110 polygons and was downloaded from the United States Census' website

(U.S. Census Bureau 2014). Since, differently from UsAquifers, this map contained several

islands (such as Guam) that were far from the mainland, the insular part of the map was

removed.

In order to evaluate how the computation of the exact overlay impacts the performance of the

proposed method, it was compared against GRASS GIS 6.4 (GRASS Development Team 2014) v.overlay

module. Tests were performed overlaying the pairs of maps of the same countries. Also, we overlaid each

map with itself in order to stress-test the algorithms in situations where all edges coincide.

In the first set of tests, we evaluated the influence of the uniform grid size in the running time of

the algorithm. Table 1 presents the total running-time (including I/O) for different grid sizes (all grids

used in these tests are square). Also, the number of edge-edge intersections in each map and the total

number of edges pairs tested for intersection in each test case is included.

Notice that, for the Brazilian datasets, the best results were always obtained using small grids

(10002 and 20002 cells), while in the datasets from the United States the best results were obtained with

larger ones. This may be explained because, as it can be seen in Table 1, increasing the grid size does not

necessarily reduces the amount of intersections that need to be tested (for example, when the BrCounty

map is overlaid with itself, the number of tested intersections increase if the grid size increases from

20002 to higher values). This happens because, using too large grids, the size of each grid cell is smaller

and, thus, one edge may intersect several cells, which may increase the number of intersections tested.

Furthermore, even if the number of intersections that need to be tested decrease, this reduction may not

balance the overhead of using a larger grid (this could explain the reason that made the 8000 2 grid be

better for the overlay of maps UsCounty with UsAquifers than the 16,0002 grid).

Table 2 presents a comparison between a sequential version of Rat-overlay, a parallel one and

the v.overlay module of GRASS GIS (that is also a sequential implementation). The values for the

uniform grid size were chosen based on the configurations that performed better in the tests presented in

Table 1 and the v.overlay parameters were configured using the default values suggested by GRASS GIS.

As it can be noticed, the parallel version of Rat-overlay was faster than GRASS in all test cases.

In fact, overlaying BrCounty with BrSoil was almost 14 times faster using our method than using

GRASS. The sequential version, on the other hand, was slower than GRASS in the two test cases with the

largest amount of edges intersections. This indicates that, even though we compute the exact overlay

using multiple precision arithmetic (that is much slower than hardware-implemented floating point

operations), our method can present a competitive performance if compared against a method from a

widely used GIS.

It is important to observe that, despite we executed the parallel implementation using 32 threads,

its speedup ranged from 3 to 5 times if compared against the sequential implementation. This may be

explained because we needed to use several critical sections to ensure that concurrent accesses to the data

structures were performed safely. Also, despite the method was executed using 32 threads, the computer

where the tests were performed has only 16 physical cores. Furthermore, as it will be shown in the next

tests, I/O corresponds to a significant amount of the processing time. Thus, according to Amdahl's law,

I/O may limit the speedup of the parallel implementation, since disk access performance usually cannot

be improved using parallel programming.

Finally, Table 3 presents the amount of time that Rat-overlay spent in each step of the overlay

computation. It is interesting to observe that the bottleneck of the algorithm varies for different test cases.

For example, the time spent performing I/O ranges from 16% to 38% of the total time, being the

algorithm's bottleneck in two of the test scenarios. Edges intersections computation, on the other hand,

represents a small percentage of the execution time in some scenarios (for example, 7% of the total time

during the overlay of UsCounty with UsAquifers), while in the overlay of UsCounty with itself it

corresponds to almost half of the execution time, which can be explained because when the maps are the

same, the amount of edges of each map in each grid cell is the same, which maximizes the number of pair

of edges to be tested for intersection.

Conclusion

This work proposed Rat-overlay, an efficient method that uses rational numbers to compute the exact

overlay between two maps. As tests showed, even though Rat-overlay performs computation using

multiple precision arithmetic (that is much slower than hardware-implemented operations with floating

point numbers), its performance is competitive if compared against the approximate overlay method

present in the widely used GRASS GIS.

Furthermore, Rat-overlay can be implemented using parallel programming techniques. As shown

in the tests, an OpenMP implementation was able to achieve from 3 to 5 times of speedup if compared

against the sequential implementation.

As future work, we intend to compare the performance of Rat-overlay against other algorithms

(such as the algorithms implemented in ArcGIS®). Also, we intend to compare the quality of the exact

output obtained by Rat-overlay against approximate overlays obtained by other methods. Finally, another

future work is to analyze in more details which factors influence the optimal size of the uniform grid that

should be used for different input maps. By doing that, the objective is to develop some heuristic to

automatically determine the adequate grid size for each execution.

Acknowledgment

Removed because of the blind review.

References

Edelsbrunner, Herbert and Mücke, Ernst Peter. 1990. “Simulation of simplicity: a technique to cope with

degenerate cases in geometric algorithms.” In ACM Transactions on Graphics (TOG), vol. 9, no.

1, 66–104, ACM.
Franklin , Wm Randolph, Sivaswami , Venkateshkumar, Sun, David, Kankanhalli , Mohan, and

Narayanaswami , Chandrasekhar. 1994. “Calculating the area of overlaid polygons without

constructing the overlay.” In Cartography and Geographic Information Systems, vol. 21, no. 2,

81–89, Taylor & Francis.
Franklin , Wm Randolph, Sun, David, Zhou, Meng-Chu, and Wu, Peter YF. 1989. “Uniform grids: A

technique for intersection detection on serial and parallel machines.” In Proceedings of Auto

Carto 9: Ninth International Symposium on Computer-Assisted Cartography, 100–109.
Granlund, Torbjörn and the GMP development team. 2014. “GNU MP: The GNU Multiple Precision

Arithmetic Library.” Accessed August 2014. http://gmplib.org/.
GRASS Development Team. 2014. “Geographic Resources Analysis Support System (GRASS GIS)

Software.” Open Source Geospatial Foundation. Accessed August 2014. http://grass.osgeo.org
IBGE. 2014. “Mapa de solos do Brasil.” Accessed August 2014. ftp://geoftp.ibge.gov.br/mapas

tematicos/mapas murais/shapes/solos
IBGE. 2014. “Malha municipal digital 2007.” Accessed August 2014. ftp://geoftp.ibge.gov.br/malhas

digitais/municipio
National Atlas. 2014. “Principal aquifers of the 48 conterminous United States, Hawaii, Puerto Rico, and

the U.S. Virgin Islands.” Accessed August 2014. http://nationalatlas.gov/mld/aquifrp.html
U.S. Census Bureau. 2014. “United States Census Shapefiles.” Accessed August 2014.

https://www.census.gov/cgi-bin/geo/shapefiles2013/main

 Uniform grid size

Map
1

Map
2

 Inter
s.

1,000 2,000 8,000 16,000
Tim

e Test. int.
Tim

e Test. int.
Tim

e Test. int.
Tim

e Test. int.
BrCo

.
BrCo

. 1x105 12 3x106 11 2x106 15 2x106 24 3x106

BrSoi
l

BrSoi
l 6x104 8 2x106 7 2x106 11 2x106 20 3x106

BrCo
.

BrSoi
l 2x104 6 6x105 6 3x105 9 9x104 16 7x104

UsAq
.

UsAq
. 5x104 42 2x107 19 7x106 12 2x106 17 2x106

UsCo
.

UsCo
. 3x105

1,04
8 8x108 501 4x108 172 1x108 124 6x107

UsCo
.

UsAq
. 1x104 54 2x107 34 6x106 28 8x105 34 4x105

Table 1. Comparison of the processing time (in seconds) to overlay the map in column Map 1

with the map in column Map 2 considered different uniform grid sizes. Column

Test. int presents the number of pairs of edges tested for intersection and column Inters. presents

the number of intersections effectively found.

Map 1 Map 2 # intersections Grid size
Time(s)

Serial Parallel GRASS

BrCounty BrCounty 105,754 2,000 34.5 11.5 30.3

BrSoil BrSoil 56,246 2,000 23.3 7.4 32.3

BrCounty BrSoil 20,860 1,000 16.1 5.9 81.7

UsAquifers UsAquifers 50,329 8,000 37.2 11.9 47.3

UsCounty UsCounty 300,511 16,000 625.5 124.4 175.0

UsCounty UsAquifers 11,744 8,000 67.5 28.3 86.3

Table 2. Comparison of the processing time (in seconds) of the parallel and sequential versions
of Rat-overlay against GRASS v.overlay module.

Map 1 BrCounty BrSoil BrCounty UsAquifers UsCounty UsCounty

Map 2 BrCounty BrSoil BrSoil UsAquifers UsAquifers UsCounty

I/O 2.4 1.6 1.9 2.2 10.9 20.4

Compute areas 0.5 0.3 0.2 0.3 1.1 3.1

Create grid 1.7 1.3 1.1 3.5 7.4 17.7

Intersect edges 2.3 1.7 0.7 3.0 2.0 60.6

Locate points 1.6 0.8 0.9 1.6 4.7 13.7

Compute output 3.0 1.6 1.0 1.3 2.3 9.0

Total 11.5 7.4 5.9 11.9 28.3 124.4

Table 3. Comparison of the amount of time (in seconds) spent by Rat-overlay to perform the
main steps of the overlay computation.

Figure 1. Example of a map and the chains stored in the corresponding map file. Observe that

each chain is displayed using different colors in the map.

Figure 2. Example of two maps (one represented in black and another one represented in blue)

whose edges do not intersect.

Figure 3. Example of two maps (one represented in black and another one represented in blue)

that contains edge intersections. Points represented in red are the intersections of the edges from

the two maps and points in green represents the midpoints of some edges created by the

intersections.

Figure 4. Example of a 4 x 7 uniform grid used to accelerate the computation of the

intersections between the edges from map 1 (in black) with the edges from map 2 (in blue).

Figure 5. Using a uniform grid to determine in which polygon a point p is.

