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Introduction

o Visibility applications play an important role in
Geographical Information Systems (GIS).
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Introduction

Visibility applications play an important role in
Geographical Information Systems (GIS).

The focus is to find the points on the terrain that
are visible from a particular point (the observer).
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Introduction

o These applications include telecommunications,
security monitoring, observation paths, etc.
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Introduction

o These applications include telecommunications,
security monitoring, observation paths, etc.

o For example, an “observer’ may be a mobile
phone tower
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Introduction

o These applications include telecommunications,
security monitoring, observation paths, etc.

o For example, an “observer’ may be a mobile
phone tower or an observation tower.
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Introduction

2 An important problem is to site observers in order
to obtain an optimal visual coverage of a terrain.
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Introduction

DDDDDDD

An important problem is to site observers in order
to obtain an optimal visual coverage of a terrain.

For example, suppose that you want to cover
95% of a terrain.

How many and where to site observers to
achieve this coverage?
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Introduction

o We will present a parallel method to solve a
variation of the siting observers problem on
terrains represented by a digital elevation matrix.
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Terrain visibility

DDDDDDD

An observer is a point (in the space) from which
we wish to see or communicate with other
points, called targets.

The radius of interest, R, of an observer means
the distance that the observer can see.

For example, for an observation tower, R is the
maximum distance that a person on the tower
can see.
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Terrain visibility

A point is visible by the observer if its distance
from the observer is, at most, R, and if there is
no terrain point blocking the line segment
connecting the point and the observer.
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Terrain visibility

DDDDDDD

A point is visible by the observer if its distance
from the observer is, at most, R, and if there is
no terrain point blocking the line segment
connecting the point and the observer.

For example, & s visible |
*‘\\ 5) .
.?\ <
(R R
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Terrain visibility

DDDDDDD

A point is visible by the observer if its distance
from the observer is, at most, R, and if there is
no terrain point blocking the line segment
connecting the point and the observer.

For example,

—
2
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) i .....................

Is not visible
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Terrain visibility

DDDDDDD

A point is visible by the observer if its distance
from the observer is, at most, R, and if there is

no terrain point blocking the line segment
connecting the point and the observer.

For example,
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Terrain visibility

The viewshed of an observer is the set of terrain
points whose corresponding targets are visible from it.

The visibility index of an observer is the number of
targets that are visible from it.

»

o ’?:’5*‘

TR -t Viewshed
Terrain visualization
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Terrain visibility

The joint viewshed of a set of observers is the union
of the individual viewsheds.

The joint visibility index (VIX) of a set of observers is

the number of targets that are visible from at least one

observer in the set.
T WO ST R ‘
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Terrain visualization
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Joint viewshed
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Terrain visibility

DDDDDDD

The viewshed and the joint viewshed are (usually)
represented by a square bit matrix of size 2R x 2R.

In this matrix, 1 indicates that the corresponding target
IS visible and O is not.

Thus, the (joint) visibility index is the number of 1 bits
In the matrix.
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Observer siting

o The Multiple Observer Siting Problem: given a
set P of (candidate) observers, select N
observers in P such that the joint visibility index
of this subset is maximized.

o Example: selecting 10 observers
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Observer siting
This problem is NP-Hard.

It is (generally) solved using a heuristic.

We propose an efficient local search strategy to
Improve the solution obtained by a greedy
method.
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Multiple observer siting

o A greedy solution: Site method (Franklin 2002)

Given a terrain, let P be a set with the “best”
candidate observers;
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Multiple observer siting

o A greedy solution: Site method (Franklin 2002)

Given a terrain, let P be a set with the “best
candidate observe e e e e —

with the highest

7

visibility index
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Multiple observer siting

o A greedy solution: Site method (Franklin 2002)

Given a terrain, let P be a set with the “best”
candidate observers;

Initialize the solution S as empty;
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Multiple observer siting

A greedy solution: Site method (Franklin 2002)

Given a terrain, let P be a set with the “best”
candidate observers;

Initialize the solution S as empty;

Then, iteratively, select the observer (in P) that
will most increase the current joint visibility
index of S and insert this observer in S;
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Multiple observer siting

DDDDDDD

A greedy solution: Site method (Franklin 2002)

Given a terrain, let P be a set with the “best”
candidate observers;

Initialize the solution S as empty;

Then, iteratively, select the observer (in P) that
will most increase the current joint visibility
index of S and insert this observer in S;

Repeat the last operation until a termination
condition is satisfied.
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Multiple observer siting

o A greedy solution: Site method (Franklin 2002)

Given a terrain, let P be a set with the “best”
candidate observers;

Initialize

Typically, until a minimum visual
IL1Cy MGl coverage has been achieved or a :
Wikl maximum number of observers
index of < has been selected.
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Multiple observer siting

The solution obtained by the greedy method is
(mostly) not optimal.

We propose a strategy (to try) to increase the
terrain coverage preserving the number of
observers selected.
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Multiple observer siting

DDDDDDD

The solution obtained by the greedy method is
(mostly) not optimal.

We propose a strategy (to try) to increase the
terrain coverage preserving the number of
observers selected.

This may reduce the number of observers required
to achieve the desired coverage.

It may represent an important improvement since an
“‘observer’ can be an expensive facility, for example,
a communication tower.
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Our propose

DDDDDDD

Extend the greedy method including an
improvement step to try to increase the joint
visibility index of each current partial solution.

This improvement step checks if the joint
visibility index (of a partial solution) can be
Increased replacing an observer in the solution
with another one did not select yet.
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Our propose

DDDDDDD

This checking step performs a local search
whose goal is to select the best neighbor
solution.

A neighbor solution of a solution S is a solution
S’ where an observer in S is replaced with
another observer not in S.
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Our propose — local search

For example: Suppose P with 5 observers whose
viewsheds are V., V,, ..., Vs and let S={V,, V,, V;}
be a partial solution. Thus, the neighbors of S are

) Qv
£ S's
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Our propose — local search

- In each iteration of the greedy method, the local
search is repeated until to obtain a solution
having no better neighbor (a local optimal).
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Our propose — local search

In each iteration of the greedy method, the local
search is repeated until to obtain a solution

having no better neighbor (a local optimal).

This approach is very time consuming.
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Our propose — local search

DDDDDDD

In each iteration of the greedy method, the local
search is repeated until to obtain a solution

having no better neighbor (a local optimal).

This approach is very time consuming.

The greedy method requires a lot of processing
time.

GPU parallel siting algorithm 33



Our propose — local search

2 In each iteration of the greedy method the Iocal

search Is rep i
having no bet In each iteration, it is necessary to

check all candidate observers to
_ select the one that will most increase
o This approacl (3= 6o =

o The greedy méthod requires a lot of processing
time.
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Our propose — local search

DDDDDDD

In each iteration of the greedy method, the local
search is repeated until to obtain a solution

having no better neighbor (a local optimal).
This approach is very time consuming.

The greedy method requires a lot of processing
time.

The local search is still worse: it has to evaluate
all neighbors of each partial solution.
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Our propose — local search

- In each iteration of the greedy method, the local
search is repeated until to obtain a solution
having no better neighbor (a local optimal).

o This approach is very time consuming.

. The oA SECARODSEVE R (INS e partial
solution) is replaced with all the

other observers non selected yet.
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Local search: an efficient implementation

o The local search bottleneck is the computation
of the visibility index of all neighbor solutions.
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Local search: an efficient implementation

The local search bottleneck is the computation
of the visibility index of all neighbor solutions.

Let P = {p,,...,p,} be the candidate set and
S ={s,..., S} be a partial solution.

i GPU parallel siting algorithm 38
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Local search: an efficient implementation

The local search bottleneck is the computation
of the visibility index of all neighbor solutions.

Let P = {p,,...,p,} be the candidate set and
S ={s,..., S} be a partial solution.

The neighbors of S are

S =S\{s} U {p}
foralli=1,..,k and j=1,..,n with i#j and p, & S

i GPU parallel siting algorithm 39



Local search: an efficient implementation

The visibility indices computation can be
subdivided in two steps:

@ Create an array B of size k and for i=1,...,k,
store in B[i] the joint viewshed of S\ {s};

@ Create a matrix V of size k x n and for each
I=1,...,k and j=1,...,n, with j # I, store in V]i,]
the visibility index of the joint viewshed
obtained overlapping B[/] with the viewshed of
the observer p;.

i GPU parallel siting algorithm 40
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Local search: an efficient implementation

A straightforward implementation of step 1 is:

fori«— 1to kdo
form <« 1to kdo
If m # i then
/[ overlap BJi] with S[m]
B[] < B[i] & S[m]

i GPU parallel siting algorithm 41
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Local search: an efficient implementation

o A straightforward implementation of step 1 is:

fori«<— 1to kdo
form«— 1to kdo
If m # i then
// overlap B[i] with S[m]
B[i] < B[i] &_S[m]
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Overlapping two matrices: the

joint viewshed B, and the
viewshed of the observer p,,
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Local search: an efficient implementation

DDDDDDD

A straightforward implementation of step 1 is:

fori«— 1to kdo
form <« 1to kdo
If m # i then
/[ overlap BJi] with S[m]
B[] < B[i] & S[m]

This code performs ©(k?) overlapping operations;

We can make much better using dynamic
programming.
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Local search: an efficient implementation

DDDDDDD

Suppose the partial solution S has 5 observers,
thatis, S ={S,,..., S5}

Then, the computation of B would require the
overlapping of the following viewsheds:

B[1]1=| S[2] | S[3] | S[4] | SI5
B[2]=| S[1] | S[3] | S[4] | S[5
B[3]=| S[1] | S[2] | S[4] | SI5
B[4]=| S[1] | S[2] | S[3] | SI5
B[5]=| S[1] | S[2] | S[3] | S[4

GPU parallel siting algorithm 44



Local search: an efficient implementation

o Suppose the partial solution S has 5 observers,
thatis, S ={S,,..., S5}

The matrix with all B's

_ can be split in the
o Then, the computation o following way

overlapping of the following vy
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Local search: an efficient implementation

The computation of the matrix storing all B's can be
rewritten as following:

B[1]=|S[2] S[3] |S[4] S[5] S[2] |S[3] |S[4] S[O]
B[2]=|S[1] |SI3] |S[4] |S[5] | |S[1] S[3] [S[4] |S[O]
B[3]= [S[1] [S[2] |S[4] |S[5] |=[S[1] [S[2] + S[4] |S[5]
B[4]=|S[1] |S[2] |SI3] (S[5] | |S[1] |SI2] (S[3] S[5]
B[5]=|S[1] |S[2] |SI3] (S[4] | |S[1] |SI2] (S[3] |S[4]
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Local search: an efficient implementation

The computation of the matrix storing all B's can be
rewritten as following:

B[1]=|S[2] S[3] |S[4] S[5] S[2] |S[3] |S[4] S[O]
B[2]=|S[1] |SI3] |S[4] |S[5] | |S[1] S[3] [S[4] |S[O]
B[3]= [S[1] [S[2] |S[4] |S[5] |=[S[1] [S[2] + S[4] |S[5]
B[4]=|S[1] |S[2] |SI3] (S[5] | |S[1] |SI2] (S[3] S[5]
B[5]=|S[1] |S[2] |SI3] (S[4] | |S[1] |SI2] (S[3] |S[4]

Let L be the left (blue) matrix and R be the right
(orange) matrix.

These two matrices can be computed separately
using an efficient iteration.

i GPU parallel siting algorithm 47

DDDDDDD



Local search: an efficient implementation

o Generalizing, forany i = 2,...k-1,

B=S® -®S_ @S, @ DS,
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Local search: an efficient implementation

o Generalizing, forany i = 2,...k-1,
Bi=\S1@° D Si-l, ®\Si+1 @ - '@Sk,

Y Y

L. R

/ /

B=L ®R
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Local search: an efficient implementation

DDDDDDD

Generalizing, forany i = 2,...k-1,
Bl.=‘S169- @D Si—l, GL)\SZ.+1 ®- - @Sk;
Y Y
Li Ri
B.=L ®R

And the values of L and R can be computed by
the following recurrences:

L,=® and L,=L., ®S,, fori=2,...k
Rk — ¢ and RI — SI+1@ RI+1 fOr i=k'1,...,1
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Local search: an efficient implementation

o Thus, the step 1 can be computed performing
©O(k) overlapping operations:

k to compute L;
k to compute R;

k tooverlap L and R
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Local search: an efficient implementation

In step 2, to compute the matrix V-

each joint viewshed stored in B is overlapped
with the viewshed of each candidate
observer did not include in the solution yet;

the number of 1 bits in the resulting joint
viewshed is counted.
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Matrix V computation

DDDDDDD

Supposing the viewsheds are linearized and
stored in a matrix P;

Each V]i,], for i=1,...k and j=1,...,n, is the number
of 1 bits in the overlapping of BJi] with P[/]

1 2 ... 4R? 1 2 ... 4R?
1 0 1 0 1 1 0 0
i | oo 1 />J (O 1
k 1 0 0 n 0 1 1
B P
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Local search: an efficient implementation

A straightforward implementation of step 2 is:

fori«— 1to kdo
forj«— 1tondo
if j # i then
// count the number of 1 bits in B[i]® P[/]
for w — 1to 4R? do

VI1J] < VIijI+(BLiw] or P[jw])

i GPU parallel siting algorithm 54
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Matrix V computation

But, considering the transpose of P

1

2 ...

4R?

1 0

1

0 2R2

B

PT

The computation of V is very similar to the
matrix multiplication (replacing the multiplication
operator with a bitwise-or)

DDDDDDD
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Local search: an efficient implementation

Thus, the code for step 2 is:

fori<— 1to kdo
forj«— 1tondo
If j # i then
// count the number of 1 bits in B[i]1® P[j]
for w«— 1 to 4R? do

VIijT < VI0ij1+(B[iw] or P'[w,j])

i GPU parallel siting algorithm 56
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Local search: an efficient implementation

DDDDDDD

The step 2 can be efficiently computed adapting
a very fast GPU matrix multiplication algorithm.

We adapted the algorithm developed
(implemented) by Nvidia in 2013:
the multiplication operation was replaced with
bitwise-or operation;

as the viewsheds are, usually, very sparse
matrices, we included code to avoid loading and
processing matrix blocks where all elements are 0O;
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Results

Our algorithm SiteGSM was compared against
two other versions (implementations): Site+ and
SiteGPU.

Both are also based on the greedy strategy and
use local search, but

Site+ uses a sequential (CPU) implementation;
SiteGPU implements some operations using

GPU but it uses only the GPU global memory
and does not include dynamic programming.
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Results

DDDDDDD

The tests were executed on a computer with
dual Intel Xeon E5-2687 3.1GHz, 128GiB of
memory, GPU NVIDIA Tesla Kepler K20x with
2688 cores running Ubuntu 12.04 LTS.

We used terrains with 1201 x 1201 points and
3601 x 3601 points (obtained from NASA
STRM)
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Results

Processing Time (in sec.)

SiteGSM SiteGPU Site+
75% | 162 12 180 (15.0) | 11010  (917.5)
100 | 85% | 299 33 545  (l16.5) oo (-)
95% | * * 8 (-) - (-)
1201 75% 55 35 (11.7) | 1304  (434.7)

3
% | 200 | 85% | 97 6 104 (17.3) | 4020  (670.0)
1201 95% | 323 48 888  (18.5) | oo )
2

4

19 (9.5) 479 (239.5)
70 (17.5) | 1826  (456.5)
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95% | 216 28 566  (20.2) | 19408  (693.1)

75% 81 76 422 (5.6) o (-)

200 | 85% 97 110 708  (6.4) oo (-)

95% | 125 183 1341 (7.3) oo (-)

3601 75% 36 28 160 (5.7) oo (-)
X 300 | 85% 42 41 276 (6.7) oo (-)
3601 95% 54 66 523 (7.9) oo (-)
75% 20 14 81 (5.8) | 14867 (1061.9)

400 || 85% 24 19 124 (6.5) | 22869 (1203.6)

95% 30 30 270 (9.0) oo (-)
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Results

As an additional test, we compared the
execution time of the local search using a

conventional approach against our proposed
strategy that includes:

dynamic programming

“matrix multiplication” using GPU
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Results

Time (in seconds)

Terrain Numper of Compute B matrix | Compute V matrix Total
= Candidates | # Obs. | Conv. DP CPU GPU Conv. |[Proposed| Speedup
oo 16 0.1 0.1 17.4 0.1 17.6 0.9 m=m) 20x
-é 500 32 1.3 0.1 98.7 0.5 100 1.6 63X
| 1201 64 9.2 0.3 351 1.5 360 3.4 106X
| X 32 1.1 0.1 175 0.7 177 1.9 93x
g 1201 1000 64 10.7 0.4 829 3.1 839 5.2 161x
2 128 94 1.6 3363 12 3457 18 192x
= 256 640 5.5 11129 39.1 11769 56.8 207x
I 16 0.4 0.1 52.3 0.4 53 2.6 20X
S 500 32 2.6 0.1 183 0.9 186 3.6 52x%
g 64 18 0.6 635 2.8 654 6.9 95x
%) 32 2.2 0.2 314 1.3 317 5.1 62X
t", 3601 1000 64 23.9 0.8 1689 6.2 1713 12.8 134x
w X 128 175 3 6083 21.7 6259 35.2 178X
3601 256 1375 12 24114 83.7 25489 126 202x
32 2.2 0.2 636 2.3 639 8.7 73X
2000 64 13.4 0.5 1880 6.7 1895 14.2 133x
128 192 3.3 13381 46.9 13575 64 212x
256 1320 11.5 46008 159 47329 203| mmm) 234X
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Conclusion

DDDDDDD

We presented a very fast implementation of a
method to site observers on terrains.

This implementation is based on a greedy
strategy combined with a local search where we

used dynamic programming and GPU parallel
Implementation.

This local search strategy can be used to
Improve other heuristics that solves other
optimization problems.
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Future work

o Develop parallel implementation using GPU to:

compute the viewshed of each observer;

replace the greedy strategy.
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Thank you

Any questions or suggestions?
5 |

2
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