Geometric Operations on Millions of Objects

W. Randolph Franklin

Rensselaer Polytechnic Institute Troy, NY, USA

UF Viçosa 24 Jul 2013
Partially supported by FAPEMIG and NSF grants CMMI-0835762 and IIS-1117277.

Large Geometric Datasets vs New HW Capabilities

- Larger geometric datasets $\gg 10^{6}$ objects
- New parallel HW — restricted capabilities
- \therefore Need new algorithms, data structures.

Why parallel HW?

- More processing \rightarrow faster clock speed
- faster \rightarrow more electrical power
- faster \rightarrow smaller features on chip
- smaller \rightarrow greater electrical resistance!
- $\Longrightarrow \Longleftarrow$.
- Serial processors have hit a wall.

Parallel HW features

- IBM Blue Gene / Intel / NVidia GPU / other
- Most laptops have NVidia GPUs.
- Thousands of cores / CPUs / GPUs
- Lower clock speed 750 MHz vs 3.4 GHz
- Hierarchy of memory: small/fast \rightarrow big/slow
- Communication cost \gg computation cost
- Efficient for blocks of threads to execute SIMD.
- OS: 187th fastest machine in 6/2013 top500.org runs Windows. 1-186 run Linux variants.

Geometric Databases

- Larger and larger geometric databases now available, with tens of millions of primitive components.
- Needed operations:
- interference detection
- boolean: intersection, union
- planar graph overlay
- mass property computation of the results of some boolean operation
- Apps:
- Volume of an object defined as the union of many overlapping primitives. Two object interfere iff the volume of intersection is positive.
- Interpolate population data from census tracts to flood zones.

Algorithm Themes

- I/O more limiting than computation \rightarrow minimize storage
- For $N \gg 1000000$, Ig N nontrivial \rightarrow deprecate binary trees
- Minimize explicit topology, expecially 3D.
- Plan for 3D; many 2D data structures not easily extensible to 3D, e.g., line sweep.
- E.g., Voronoi diagram: 2D is $\theta(N \lg N)$. 3D is $\theta\left(N^{2}\right)$

Confessions

- Not a deep philosophical thinker; always seeing holes in generalities.
- Prefer Galileo to Aristotle. Galileo experimented.
- Do small things well, lay a foundation, generalize.
- Driven by Euclidean geometry, where order is implicit in the axioms.
- Explicit representations unnecessary.

- Example of hidden order: the centroid, circumcenter, and orthocenter of a triangle collinear.

Theme: Minimum Explicit Topology

- What explicit info does the application need? Less \rightarrow simpler
- Object: polygon with multiple nested components and holes.
- Apps:
- area
- inclusion testing.
- Complete topology: loops of edges; the tree of component containments.
- Necessary info: the set of oriented edges.

Point Inclusion Testing on a Set of Edges

- "Jordan curve" method
- Extend a semi-infinite ray.
- Count intersections.
- Odd <==> Inside
- Obvious but bad alternative: sum subtended angles. Implementing w/o arctan, and handling special cases wrapping around 2π is tricky and reduces to Jordan curve.

Area Computation on a Set of Edges

- Each edge, with the origin, defines a triangle.
- Sum their signed areas $A(P)=\sum A\left(t_{i}\right)$

Advantages of Set of Edges Data Structure

- Simple enough to debug.

SW can be simple enough that there are obviously no errors, or complex enough that there are no obvious errors.

- Less space to store.
- Easy parallelization.
- Partition edges among processors.
- Each processor sums areas independently, to produce one subtotal.
- Total the subtotals.

What About a Set of Vertices Data Structure?

- Too simple.
- Ambiguous: two distinct polygons may have the same set of edges.

Set of Vertex-Edge Incidences

- Another minimal data structure.
- Only data type is incidence of an edge and a vertex, and its neighborhood. For each such:
- $\mathrm{V}=$ coord of vertex
- $\mathrm{T}=$ unit tangent vector along the edge
- $\mathrm{N}=$ unit vector normal to T pointing into the polygon.
- Polygon: $\{(\mathrm{V}, \mathrm{T}, \mathrm{N})\}$ (2 tuples per vertex)
- Perimeter $=-\sum(V \cdot T)$.

- Area $=1 / 2 \sum(V \cdot T)(V \cdot N)$
- Multiple nested components ok.

Demonstration: Mass Properties of the Union of Millions of Cubes

Unifying Example: Mass of Union

- Nice unifying illustration of several ideas.
- Do a prototype on an easy subcase (congruent axis-aligned cubes).
- However extends to general polyhedra.
- Not statistical sampling - exact output, apart from significant digit loss.
- Not subdivision-into-voxel method - the cubes' coordinates can be any representable numbers.

Application: Cutting Tool Path

- Represent path of a tool as piecewise line.
- Each piece sweeps a polyhedron.
- Volume of material removed is (approx) volume of union of those polyhedra.
- Image is from Surfware Inc's Surfcam website.

Traditional N-Polygon Union

- Construct pairwise unions of primitives.
- Iterate.

Time depends on intermediate swell, and elementary intersection time.

- Let $P=$ size of union of an $M-g o n$ and an $N-g o n$. Then $P=O(M N)$.
- Time for union (using line sweep) $T=\theta(P \lg P)$.
- Total $T=O\left(N^{2} \lg N\right)$.

Hard to parallelize upper levels of computation tree.

Problems With Traditional Method

- $\lg N$ levels in computation tree cause $\lg N$ factor in execution time. Consider $N>20$.
- Intermediate swell: worse as overlap is worse. Intermediate computations may be much larger than final result.
- The explicit volume has complicated topology: loops of edges, shells of faces, nonmanifold adjacancies.
- Tricky to get right.
- The explicit volume not needed for computing mass properties.
- Set of vertices with neighborhoods suffices.

Volume Determination

Box: $V=\sum_{i} s_{i} x_{i} y_{i} z_{i}$
$s_{i}:+1$ or -1

- Rectilinear polyhedra: $V=\sum_{i} s_{i} x_{i} y_{i} z_{i}$
- \exists formulae for general polyhedra.

Properties

Represent output union polyhedron as set of vertices with neighborhoods.

- no explicit edges; no edge loops.
- no explicit faces; no face shells.
- no component containment info.
- general polygons ok: multiple nested or separate comps.
- any mass property determinable in one pass thru the set.
- parallelizable.
- compatible with slow I/O.

Volume Computation Overview

- Find all vertices of output object.
- For each vertex, find location and local geometry.
- Sum over vertices, applying formula.

Finding the Vertices

3 types of output vertex:

- Input vertex,
- Edge-face intersection,
- Face-face-face intersection.
- Find possible output vertices, and filter.
- An output vertex must not be contained in any input cube.
- Isn't intersecting all triples of faces, then testing each candidate output vertex against every input cube too slow?
- No, if we do it right.

3D Uniform Grid

Summary

- Overlay a uniform 3D grid on the universe.
- For each input primitive - cube, face, edge - find overlapping cells.
- In each cell, store set of overlapping primitives.

Properties

- Simple, sparse, uses little memory if well programmed.
- Parallelizable.
- Robust against moderate data nonuniformities.
- Bad worst-case performance: defeatable by extremely nonuniform data.
- Ditto any hierarchical method like octree.

Advantage

- Intersecting primitives must occupy the same cell.
- The grid filters the set of possible intersections.

Covered Cell Concept

Optimization to prune objects before pairwise intersection tests.

- Only visible intersections contribute to the output.
- That's often a small fraction - inefficient.
- Solution: add the cubes themselves to the grid.

Adding the Cubes Themselves to the Grid

- For each cubes, find cells it completely covers.
- When cell completely covered by a cube: nothing in that cube can contribute to the output. So:
- Find covered cells first.
- Do not insert objects into covered cells.
- Intersect pairs and triples of objects in noncovered cells.

When cell size somewhat smaller than edge size, álmost no hidden intersections found. Good.
Expected time $=\theta($ size(input $)+$ size(useful intersections) $)$.

Filter Possible Intersections

... by superimposing a uniform grid on the scene.

- For each input primitive (cube, face, edge), find which cells it overlaps.
- With each cell, store the set of overlapping primitives.
- Expected time $=($ size(input) + size(useful intersections)).

Uniform Grid Qualities

- Major disadvantage: It's so simple that it apparently cannot work, especially for nonuniform data.
- Major advantage: For the operations I want to do (intersection, containment, etc), it works very well for any real data l've ever tried.

USGS Digital Line Graph / VLSI Design / Mesh

Uniform Grid Time Analysis

Show that time to find edge-edge intersections in E^{2} is linear in input+output size regardless of varying number of edges per cell.

- N edges, length $L, G \times G$ grid, η edges per cell.
- $\bar{\eta}=\lambda_{\eta}=\frac{N}{G^{2}}(L G+1)$
- Poisson distribution, parameter λ_{η}.
- Expected number of edge-edge tests: $\overline{\left(\eta^{2}-\eta\right)}$
- $\bar{\eta}=\lambda_{\eta}$ and $\overline{\eta^{2}}=\lambda_{\eta}{ }^{2}+\lambda_{\eta}$.
- Expected number of intersection tests per cell: $\lambda_{\eta}{ }^{2}=\frac{N^{2}}{G^{4}}(L G+1)^{2}$
- Expected total number of intersection tests, over the G^{2} cells:

$$
\frac{N^{2}}{G^{2}}(L G+1)^{2} .
$$

- Total time: insert edges into cells + test for intersections

$$
T=\Theta\left(N(L G+1)+\frac{N^{2}}{G^{2}}(L G+1)^{2}\right)
$$

- Minimized when $G=\Theta(1 / L)$, giving $T=\Theta\left(N+N^{2} L^{2}\right)$.
- Q.E.D.

Face-Face-Face Intersection Details

- Iterate over grid cells.
- In each cell, test all triples of faces, each from a different cube.
- Three faces intersect if their planes intersect, and the intersection is inside each face (2D point containment).
- Then look up s_{i} in a table and update accumulating volume.
- Implementation easier for cubes.

Point Containment Testing

- P is a possible vertex of the output union polyhedron.
- Is point P contained in any input cube?

Answer:

- Find which cell, C, contains P.
- If C is completely covered by some cube then P is inside the covering cube.
- Otherwise, test P against all the cubes that overlap C.
- Expected number of such cubes is constant, under broad conditions.
- Expect test time per P: constant.

Face-Face-Face Intersection Execution Time

- N : number of cubes
- L : edge length, $1 \times 1 \times 1$ universe.
- Expected number of 3-face intersections $=\theta\left(N^{3} L^{6}\right)$.

Effect of Grid

- Choose G : number of grid cells on a side $=2 / L$.
- Number of face triples: N^{3}
- Prob. of a 3-face test succeeding $=N^{-2} L^{6}$.
- Depending on asymptotic behavior of $\mathrm{L}(\mathrm{N})$, this tends to 0 .
- Prob. of 3 tested faces actually intersecting $=c$, indep. of N and $L(N)$.
- Big improvement!

Effect of Covered Cells

- Expected number of 3-face intersections $=\theta\left(N^{3} L^{6}\right)$.
- However, for uniform i.i.d. input, expected visible number: $\theta(N)$.
- Prob. computed intersection is visible $=c$, indep. of N and $L(N)$.
- Time to test if a point is inside any cube also constant.
- Total time reduces to $\theta(N)$.

Parallel Implementation

(In progress)

- Can't slice up the input spatially: increases area edge length.
- Inserting objects into cells quicker than intersection testing.
- Solution:
- Insert \{cubes, faces, edges\} into the cells.
- Distribute cells among threads.
- Each thread reads much data, but writes only 3 words: its contribution to the volume, area, length.

Implementation

- Very compact data structures.
- Linear congruential rng not random for geometry, so use:
- Random (Tausworth generator) uniform i.i.d. cubes.
- 1000 executable lines of C++.
- Run on dual 3.4GHx Xeon, 128GB memory.
- Small Datasets are Fast: $N=10^{4}, L=1 / 20, G=40: T=0.64 \mathrm{~s}$, $\mathrm{V}=0.676, \mathrm{~A}=40$.
- Medium: $N=10^{6}, L=1 / 100, G=200$: $T=37 \mathrm{~s}, \mathrm{~V}=0.6, \mathrm{~A}=222$. 3,125,877 output vertices, 2,775,644 face-face-face intersections.
- Large Datasets are Feasible: $N=10^{7}, L=1 / 200, G=400$: $\mathrm{T}=395 \mathrm{~s}, \mathrm{~V}=0.685$, $\mathrm{A}=443$. 24,868,405 output vertices, $33,996,760$ face-face-face intersections.

Implementation Validation

It compiles and runs w/o crashing; why look for trouble?

- Terms summed for volume are large and mostly cancel.
- Errors unlikely to total to a number in [0,1].
- Expected volume: $1-\left(1-L^{3}\right)^{N}$.
- Compare to computed volume.
- Assume that coincidental equivalence is unlikely.
- Construct specific, maybe degenerate, examples with known volume.

Extensions

To general boolean ops:

- Intersection of many convex polyhedra quite easy.
- Any boolean op expressible as union of intersections (common technique in logic design for computer HW).
To general polyhedra:
- Formulae are messier.
- Roundoff error would be biggest problem.
- Fatal to miss an intersection.
- Compute using rationals, perhaps with CGAL.
- Time cost: factor of 100 ?

Testing polyhedron validity: Illegal volume or volume change after rigid transformation \rightarrow invalid.

Summary - To Process Big Geometric Datasets on Parallel Machines

Guiding principles:

- Use minimal possible topology, and compact data structures.
- Short circuit the evaluation of volume(union(cubes)).
- Design for expected, not worst, case input.
- External data structures unnecessary, tho possible.

Allows very large datasets to be processed quickly in 3-D.

