
Geometric Operations on Millions of Objects
W. Randolph Franklin

Rensselaer Polytechnic Institute
Troy, NY, USA

UF Viçosa 24 Jul 2013

Partially supported by FAPEMIG and NSF grants CMMI-0835762 and IIS-1117277.

Franklin (RPI) Geometric Operations on Millions of Objects 24 July 2013 1 / 36



Large Geometric Datasets vs New HW Capabilities

Large Geometric Datasets vs New HW Capabilities

• Larger geometric datasets� 106 objects
• New parallel HW — restricted capabilities
• ∴ Need new algorithms, data structures.

Franklin (RPI) Geometric Operations on Millions of Objects 24 July 2013 2 / 36



Why parallel HW?

Why parallel HW?

• More processing→ faster clock speed
• faster→ more electrical power
• faster→ smaller features on chip
• smaller→ greater electrical resistance !
• =⇒⇐=.
• Serial processors have hit a wall.

Franklin (RPI) Geometric Operations on Millions of Objects 24 July 2013 3 / 36



Parallel HW features

Parallel HW features

• IBM Blue Gene / Intel / NVidia GPU / other
• Most laptops have NVidia GPUs.
• Thousands of cores / CPUs / GPUs
• Lower clock speed 750MHz vs 3.4GHz
• Hierarchy of memory: small/fast→ big/slow
• Communication cost� computation cost
• Efficient for blocks of threads to execute SIMD.
• OS: 187th fastest machine in 6/2013 top500.org runs Windows.

1–186 run Linux variants.

Franklin (RPI) Geometric Operations on Millions of Objects 24 July 2013 4 / 36



Geometric Databases

Geometric Databases

• Larger and larger geometric databases now available, with tens of
millions of primitive components.

• Needed operations:
• interference detection
• boolean: intersection, union
• planar graph overlay
• mass property computation of the results of some boolean

operation
• Apps:

• Volume of an object defined as the union of many overlapping
primitives. Two object interfere iff the volume of intersection is
positive.

• Interpolate population data from census tracts to flood zones.

Franklin (RPI) Geometric Operations on Millions of Objects 24 July 2013 5 / 36



Algorithm Themes

Algorithm Themes

• I/O more limiting than computation→ minimize storage
• For N � 1000000, lg N nontrivial→ deprecate binary trees
• Minimize explicit topology, expecially 3D.
• Plan for 3D; many 2D data structures not easily extensible to 3D,

e.g., line sweep.
• E.g., Voronoi diagram: 2D is θ(N lg N). 3D is θ

(
N2)

Franklin (RPI) Geometric Operations on Millions of Objects 24 July 2013 6 / 36



Confessions

Confessions
• Not a deep philosophical

thinker; always seeing holes in
generalities.

• Prefer Galileo to Aristotle.
Galileo experimented.

• Do small things well, lay a foun-
dation, generalize.

• Driven by Euclidean geometry,
where order is implicit in the ax-
ioms.

• Explicit representations unnec-
essary.

• Example of hidden order: the
centroid, circumcenter, and or-
thocenter of a triangle collinear.

Franklin (RPI) Geometric Operations on Millions of Objects 24 July 2013 7 / 36



Theme: Minimum Explicit Topology

Theme: Minimum Explicit Topology

• What explicit info does the appli-
cation need? Less→simpler

• Object: polygon with multiple
nested components and holes.

• Apps:
• area
• inclusion testing.

• Complete topology: loops of
edges; the tree of component
containments.

• Necessary info: the set of ori-
ented edges.

Franklin (RPI) Geometric Operations on Millions of Objects 24 July 2013 8 / 36



Point Inclusion Testing on a Set of Edges

Point Inclusion Testing on a Set of Edges

• ”Jordan curve” method
• Extend a semi-infinite ray.
• Count intersections.
• Odd <==> Inside
• Obvious but bad alternative:

sum subtended angles. Imple-
menting w/o arctan, and han-
dling special cases wrapping
around 2π is tricky and reduces
to Jordan curve.

Franklin (RPI) Geometric Operations on Millions of Objects 24 July 2013 9 / 36



Area Computation on a Set of Edges

Area Computation on a Set of Edges

• Each edge, with the origin, de-
fines a triangle.

• Sum their signed areas
A(P) =

∑
A(ti)

Franklin (RPI) Geometric Operations on Millions of Objects 24 July 2013 10 / 36



Advantages of Set of Edges Data Structure

Advantages of Set of Edges Data Structure

• Simple enough to debug.
SW can be simple enough that there are obviously no errors, or
complex enough that there are no obvious errors.

• Less space to store.
• Easy parallelization.

• Partition edges among processors.
• Each processor sums areas independently, to produce one

subtotal.
• Total the subtotals.

Franklin (RPI) Geometric Operations on Millions of Objects 24 July 2013 11 / 36



What About a Set of Vertices Data Structure?

What About a Set of Vertices Data Structure?

• Too simple.
• Ambiguous: two distinct polygons may

have the same set of edges.

Franklin (RPI) Geometric Operations on Millions of Objects 24 July 2013 12 / 36



Set of Vertex-Edge Incidences

Set of Vertex-Edge Incidences

• Another minimal data structure.
• Only data type is incidence of an edge and

a vertex, and its neighborhood. For each
such:
• V = coord of vertex
• T = unit tangent vector along the edge
• N = unit vector normal to T pointing into

the polygon.
• Polygon: {(V, T, N)} (2 tuples per vertex)
• Perimeter = −

∑
(V · T ).

• Area = 1/2
∑

(V · T )(V · N)

• Multiple nested components ok.

Franklin (RPI) Geometric Operations on Millions of Objects 24 July 2013 13 / 36



Demonstration: Mass Properties of the Union of Millions of Cubes

Demonstration: Mass Properties of the Union of
Millions of Cubes

Franklin (RPI) Geometric Operations on Millions of Objects 24 July 2013 14 / 36



Unifying Example: Mass of Union

Unifying Example: Mass of Union

• Nice unifying illustration of several ideas.
• Do a prototype on an easy subcase (congruent axis-aligned cubes).
• However extends to general polyhedra.
• Not statistical sampling — exact output, apart from significant digit

loss.
• Not subdivision-into-voxel method — the cubes’ coordinates can be

any representable numbers.

Franklin (RPI) Geometric Operations on Millions of Objects 24 July 2013 15 / 36



Application: Cutting Tool Path

Application: Cutting Tool Path

• Represent path of a tool as piecewise line.
• Each piece sweeps a polyhedron.
• Volume of material removed is (approx) vol-

ume of union of those polyhedra.
• Image is from Surfware Inc’s Surfcam web-

site.

Franklin (RPI) Geometric Operations on Millions of Objects 24 July 2013 16 / 36



Traditional N-Polygon Union

Traditional N-Polygon Union

• Construct pairwise unions of primitives.
• Iterate.

Time depends on intermediate swell, and elementary intersection time.
• Let P = size of union of an M-gon and an N-gon. Then P=O(MN).
• Time for union (using line sweep) T = θ(P lg P) .
• Total T = O(N2 lg N).
Hard to parallelize upper levels of computation tree.

Franklin (RPI) Geometric Operations on Millions of Objects 24 July 2013 17 / 36



Problems With Traditional Method

Problems With Traditional Method

• lg N levels in computation tree cause lg N factor in execution time.
Consider N > 20.

• Intermediate swell: worse as overlap is worse. Intermediate
computations may be much larger than final result.

• The explicit volume has complicated topology: loops of edges, shells
of faces, nonmanifold adjacancies.

• Tricky to get right.
• The explicit volume not needed for computing mass properties.
• Set of vertices with neighborhoods suffices.

Franklin (RPI) Geometric Operations on Millions of Objects 24 July 2013 18 / 36



Volume Determination

Volume Determination

Box: V =
∑

i sixiyizi
si : +1or − 1

General rectilinear polygons:
• 8 types of vertices, based on neighborhood
• 4 are type +, 4 −
• Area =

∑
i sixiyi

• Rectilinear polyhedra: V =
∑

i sixiyizi

• ∃ formulae for general polyhedra.

Franklin (RPI) Geometric Operations on Millions of Objects 24 July 2013 19 / 36



Properties

Properties

Represent output union polyhedron as set of vertices with
neighborhoods.
• no explicit edges; no edge loops.
• no explicit faces; no face shells.
• no component containment info.
• general polygons ok: multiple nested or separate comps.
• any mass property determinable in one pass thru the set.
• parallelizable.
• compatible with slow I/O.

Franklin (RPI) Geometric Operations on Millions of Objects 24 July 2013 20 / 36



Volume Computation Overview

Volume Computation Overview

• Find all vertices of output object.
• For each vertex, find location

and local geometry.
• Sum over vertices, applying for-

mula.

Franklin (RPI) Geometric Operations on Millions of Objects 24 July 2013 21 / 36



Finding the Vertices

Finding the Vertices

3 types of output vertex:
• Input vertex,
• Edge–face intersection,
• Face–face–face intersection.

• Find possible output vertices, and filter.
• An output vertex must not be contained in

any input cube.
• Isn’t intersecting all triples of faces,

then testing each candidate output vertex
against every input cube too slow?

• No, if we do it right.

Franklin (RPI) Geometric Operations on Millions of Objects 24 July 2013 22 / 36



3D Uniform Grid

3D Uniform Grid

Summary
• Overlay a uniform 3D grid on the universe.
• For each input primitive — cube, face, edge — find overlapping cells.
• In each cell, store set of overlapping primitives.
Properties
• Simple, sparse, uses little memory if well programmed.
• Parallelizable.
• Robust against moderate data nonuniformities.
• Bad worst-case performance: defeatable by extremely nonuniform

data.
• Ditto any hierarchical method like octree.
Advantage
• Intersecting primitives must occupy the same cell.
• The grid filters the set of possible intersections.

Franklin (RPI) Geometric Operations on Millions of Objects 24 July 2013 23 / 36



Covered Cell Concept

Covered Cell Concept

Optimization to prune objects before pairwise intersection tests.

• Only visible intersections contribute to the
output.

• That’s often a small fraction - inefficient.
• Solution: add the cubes themselves to the

grid.

Franklin (RPI) Geometric Operations on Millions of Objects 24 July 2013 24 / 36



Adding the Cubes Themselves to the Grid

Adding the Cubes Themselves to the Grid

• For each cubes, find cells it completely cov-
ers.

• When cell completely covered by a cube:
nothing in that cube can contribute to the
output. So:

• Find covered cells first.
• Do not insert objects into covered cells.
• Intersect pairs and triples of objects in non-

covered cells.

When cell size somewhat smaller than edge size, almost no hidden
intersections found. Good.
Expected time = θ(size(input) + size(useful intersections)).

Franklin (RPI) Geometric Operations on Millions of Objects 24 July 2013 25 / 36



Filter Possible Intersections

Filter Possible Intersections

... by superimposing a uniform grid on the scene.
• For each input primitive (cube, face, edge), find which cells it

overlaps.
• With each cell, store the set of overlapping primitives.
• Expected time = (size(input) + size(useful intersections)).

Franklin (RPI) Geometric Operations on Millions of Objects 24 July 2013 26 / 36



Uniform Grid Qualities

Uniform Grid Qualities

• Major disadvantage: It’s so simple that it apparently cannot work,
especially for nonuniform data.

• Major advantage: For the operations I want to do (intersection,
containment, etc), it works very well for any real data I’ve ever tried.

USGS Digital Line Graph / VLSI Design / Mesh
Franklin (RPI) Geometric Operations on Millions of Objects 24 July 2013 27 / 36



Uniform Grid Time Analysis

Uniform Grid Time Analysis

Show that time to find edge–edge intersections in E2 is linear in
input+output size regardless of varying number of edges per cell.
• N edges, length L, G ×G grid, η edges per cell.
• η = λη = N

G2 (LG + 1)

• Poisson distribution, parameter λη.
• Expected number of edge–edge tests: (η2 − η)

• η = λη and η2 = λη
2 + λη.

• Expected number of intersection tests per cell: λη2 = N2

G4 (LG + 1)2

• Expected total number of intersection tests, over the G2 cells:
N2

G2 (LG + 1)2.
• Total time: insert edges into cells + test for intersections

T = Θ
(

N(LG + 1) + N2

G2 (LG + 1)2
)

.

• Minimized when G = Θ(1/L), giving T = Θ
(
N + N2L2).

• Q.E.D.
Franklin (RPI) Geometric Operations on Millions of Objects 24 July 2013 28 / 36



Face–Face–Face Intersection Details

Face–Face–Face Intersection Details

• Iterate over grid cells.
• In each cell, test all triples of faces, each from a different cube.
• Three faces intersect if their planes intersect, and the intersection is

inside each face (2D point containment).
• Then look up si in a table and update accumulating volume.
• Implementation easier for cubes.

Franklin (RPI) Geometric Operations on Millions of Objects 24 July 2013 29 / 36



Point Containment Testing

Point Containment Testing

• P is a possible vertex of the output union polyhedron.
• Is point P contained in any input cube?

Answer:
• Find which cell, C, contains P.
• If C is completely covered by some cube then P is inside the

covering cube.
• Otherwise, test P against all the cubes that overlap C.
• Expected number of such cubes is constant, under broad conditions.
• Expect test time per P: constant.

Franklin (RPI) Geometric Operations on Millions of Objects 24 July 2013 30 / 36



Face–Face-Face Intersection Execution Time

Face–Face-Face Intersection Execution Time

• N: number of cubes
• L: edge length, 1× 1× 1 universe.
• Expected number of 3-face intersections = θ

(
N3L6).

Effect of Grid
• Choose G: number of grid cells on a side = 2/L.
• Number of face triples: N3

• Prob. of a 3-face test succeeding = N−2L6.
• Depending on asymptotic behavior of L(N), this tends to 0.
• Prob. of 3 tested faces actually intersecting = c, indep. of N and L(N).
• Big improvement!
Effect of Covered Cells
• Expected number of 3-face intersections = θ(N3L6).
• However, for uniform i.i.d. input, expected visible number: θ(N).
• Prob. computed intersection is visible = c, indep. of N and L(N).
• Time to test if a point is inside any cube also constant.
• Total time reduces to θ(N) .

Franklin (RPI) Geometric Operations on Millions of Objects 24 July 2013 31 / 36



Parallel Implementation

Parallel Implementation

(In progress)
• Can’t slice up the input spatially: increases area edge length.
• Inserting objects into cells quicker than intersection testing.
• Solution:

• Insert {cubes, faces, edges} into the cells.
• Distribute cells among threads.

• Each thread reads much data, but writes only 3 words: its
contribution to the volume, area, length.

Franklin (RPI) Geometric Operations on Millions of Objects 24 July 2013 32 / 36



Implementation

Implementation

• Very compact data structures.
• Linear congruential rng not random for geometry, so use:
• Random (Tausworth generator) uniform i.i.d. cubes.
• 1000 executable lines of C++.
• Run on dual 3.4GHx Xeon, 128GB memory.

• Small Datasets are Fast: N = 104, L = 1/20, G = 40: T=0.64s,
V=0.676, A=40.

• Medium: N = 106, L = 1/100, G = 200: T=37s, V=0.6, A=222.
3,125,877 output vertices, 2,775,644 face-face-face intersections.

• Large Datasets are Feasible: N = 107, L = 1/200, G = 400:
T=395s, V=0.685, A=443. 24,868,405 output vertices, 33,996,760
face-face-face intersections.

•

Franklin (RPI) Geometric Operations on Millions of Objects 24 July 2013 33 / 36



Implementation Validation

Implementation Validation

It compiles and runs w/o crashing; why look for trouble?
• • Terms summed for volume are large and mostly cancel.

• Errors unlikely to total to a number in [0,1].

• • Expected volume: 1−
(
1− L3)N .

• Compare to computed volume.
• Assume that coincidental equivalence is unlikely.

• Construct specific, maybe degenerate, examples with known volume.

Franklin (RPI) Geometric Operations on Millions of Objects 24 July 2013 34 / 36



Extensions

Extensions

To general boolean ops:
• Intersection of many convex polyhedra quite easy.
• Any boolean op expressible as union of intersections (common

technique in logic design for computer HW).
To general polyhedra:
• Formulae are messier.
• Roundoff error would be biggest problem.
• Fatal to miss an intersection.
• Compute using rationals, perhaps with CGAL.
• Time cost: factor of 100?
Testing polyhedron validity: Illegal volume or volume change after rigid
transformation→ invalid.

Franklin (RPI) Geometric Operations on Millions of Objects 24 July 2013 35 / 36



Summary — To Process Big Geometric Datasets on Parallel
Machines

Summary — To Process Big Geometric Datasets on
Parallel Machines

Guiding principles:

• Use minimal possible topology, and compact data structures.
• Short circuit the evaluation of volume(union(cubes)).
• Design for expected, not worst, case input.
• External data structures unnecessary, tho possible.

Allows very large datasets to be processed quickly in 3-D.

Franklin (RPI) Geometric Operations on Millions of Objects 24 July 2013 36 / 36


	Large Geometric Datasets vs New HW Capabilities
	Why parallel HW?
	Parallel HW features
	Geometric Databases
	Algorithm Themes
	Confessions
	Theme: Minimum Explicit Topology
	Point Inclusion Testing on a Set of Edges
	Area Computation on a Set of Edges
	Advantages of Set of Edges Data Structure
	What About a Set of Vertices Data Structure?
	Set of Vertex-Edge Incidences
	Demonstration: Mass Properties of the Union of Millions of Cubes
	Unifying Example: Mass of Union
	Application: Cutting Tool Path
	Traditional N-Polygon Union
	Problems With Traditional Method
	Volume Determination
	Properties
	Volume Computation Overview
	Finding the Vertices
	3D Uniform Grid
	Covered Cell Concept
	Adding the Cubes Themselves to the Grid
	Filter Possible Intersections
	Uniform Grid Qualities
	Uniform Grid Time Analysis
	Face–Face–Face Intersection Details
	Point Containment Testing
	Face–Face-Face Intersection Execution Time
	Parallel Implementation
	Implementation
	Implementation Validation
	Extensions
	Summary

