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Large Geometric Datasets vs New HW Capabilities

Large Geometric Datasets vs New HW Capabilities

• Larger geometric datasets� 106 objects
• New parallel HW — restricted capabilities
• ∴ Need new algorithms, data structures.
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Why parallel HW?

Why parallel HW?

• More processing→ faster clock speed
• faster→ more electrical power
• faster→ smaller features on chip
• smaller→ greater electrical resistance !
• =⇒⇐=.
• Serial processors have hit a wall.

Franklin (RPI) Geometric Operations on Millions of Objects 24 July 2013 3 / 36



Parallel HW features

Parallel HW features

• IBM Blue Gene / Intel / NVidia GPU / other
• Most laptops have NVidia GPUs.
• Thousands of cores / CPUs / GPUs
• Lower clock speed 750MHz vs 3.4GHz
• Hierarchy of memory: small/fast→ big/slow
• Communication cost� computation cost
• Efficient for blocks of threads to execute SIMD.
• OS: 187th fastest machine in 6/2013 top500.org runs Windows.

1–186 run Linux variants.
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Geometric Databases

Geometric Databases

• Larger and larger geometric databases now available, with tens of
millions of primitive components.

• Needed operations:
• interference detection
• boolean: intersection, union
• planar graph overlay
• mass property computation of the results of some boolean

operation
• Apps:

• Volume of an object defined as the union of many overlapping
primitives. Two object interfere iff the volume of intersection is
positive.

• Interpolate population data from census tracts to flood zones.
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Algorithm Themes

Algorithm Themes

• I/O more limiting than computation→ minimize storage
• For N � 1000000, lg N nontrivial→ deprecate binary trees
• Minimize explicit topology, expecially 3D.
• Plan for 3D; many 2D data structures not easily extensible to 3D,

e.g., line sweep.
• E.g., Voronoi diagram: 2D is θ(N lg N). 3D is θ

(
N2)
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Confessions

Confessions
• Not a deep philosophical

thinker; always seeing holes in
generalities.

• Prefer Galileo to Aristotle.
Galileo experimented.

• Do small things well, lay a foun-
dation, generalize.

• Driven by Euclidean geometry,
where order is implicit in the ax-
ioms.

• Explicit representations unnec-
essary.

• Example of hidden order: the
centroid, circumcenter, and or-
thocenter of a triangle collinear.
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Theme: Minimum Explicit Topology

Theme: Minimum Explicit Topology

• What explicit info does the appli-
cation need? Less→simpler

• Object: polygon with multiple
nested components and holes.

• Apps:
• area
• inclusion testing.

• Complete topology: loops of
edges; the tree of component
containments.

• Necessary info: the set of ori-
ented edges.
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Point Inclusion Testing on a Set of Edges

Point Inclusion Testing on a Set of Edges

• ”Jordan curve” method
• Extend a semi-infinite ray.
• Count intersections.
• Odd <==> Inside
• Obvious but bad alternative:

sum subtended angles. Imple-
menting w/o arctan, and han-
dling special cases wrapping
around 2π is tricky and reduces
to Jordan curve.
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Area Computation on a Set of Edges

Area Computation on a Set of Edges

• Each edge, with the origin, de-
fines a triangle.

• Sum their signed areas
A(P) =

∑
A(ti)
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Advantages of Set of Edges Data Structure

Advantages of Set of Edges Data Structure

• Simple enough to debug.
SW can be simple enough that there are obviously no errors, or
complex enough that there are no obvious errors.

• Less space to store.
• Easy parallelization.

• Partition edges among processors.
• Each processor sums areas independently, to produce one

subtotal.
• Total the subtotals.
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What About a Set of Vertices Data Structure?

What About a Set of Vertices Data Structure?

• Too simple.
• Ambiguous: two distinct polygons may

have the same set of edges.
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Set of Vertex-Edge Incidences

Set of Vertex-Edge Incidences

• Another minimal data structure.
• Only data type is incidence of an edge and

a vertex, and its neighborhood. For each
such:
• V = coord of vertex
• T = unit tangent vector along the edge
• N = unit vector normal to T pointing into

the polygon.
• Polygon: {(V, T, N)} (2 tuples per vertex)
• Perimeter = −

∑
(V · T ).

• Area = 1/2
∑

(V · T )(V · N)

• Multiple nested components ok.
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Demonstration: Mass Properties of the Union of Millions of Cubes

Demonstration: Mass Properties of the Union of
Millions of Cubes
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Unifying Example: Mass of Union

Unifying Example: Mass of Union

• Nice unifying illustration of several ideas.
• Do a prototype on an easy subcase (congruent axis-aligned cubes).
• However extends to general polyhedra.
• Not statistical sampling — exact output, apart from significant digit

loss.
• Not subdivision-into-voxel method — the cubes’ coordinates can be

any representable numbers.
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Application: Cutting Tool Path

Application: Cutting Tool Path

• Represent path of a tool as piecewise line.
• Each piece sweeps a polyhedron.
• Volume of material removed is (approx) vol-

ume of union of those polyhedra.
• Image is from Surfware Inc’s Surfcam web-

site.
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Traditional N-Polygon Union

Traditional N-Polygon Union

• Construct pairwise unions of primitives.
• Iterate.

Time depends on intermediate swell, and elementary intersection time.
• Let P = size of union of an M-gon and an N-gon. Then P=O(MN).
• Time for union (using line sweep) T = θ(P lg P) .
• Total T = O(N2 lg N).
Hard to parallelize upper levels of computation tree.
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Problems With Traditional Method

Problems With Traditional Method

• lg N levels in computation tree cause lg N factor in execution time.
Consider N > 20.

• Intermediate swell: worse as overlap is worse. Intermediate
computations may be much larger than final result.

• The explicit volume has complicated topology: loops of edges, shells
of faces, nonmanifold adjacancies.

• Tricky to get right.
• The explicit volume not needed for computing mass properties.
• Set of vertices with neighborhoods suffices.
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Volume Determination

Volume Determination

Box: V =
∑

i sixiyizi
si : +1or − 1

General rectilinear polygons:
• 8 types of vertices, based on neighborhood
• 4 are type +, 4 −
• Area =

∑
i sixiyi

• Rectilinear polyhedra: V =
∑

i sixiyizi

• ∃ formulae for general polyhedra.
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Properties

Properties

Represent output union polyhedron as set of vertices with
neighborhoods.
• no explicit edges; no edge loops.
• no explicit faces; no face shells.
• no component containment info.
• general polygons ok: multiple nested or separate comps.
• any mass property determinable in one pass thru the set.
• parallelizable.
• compatible with slow I/O.
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Volume Computation Overview

Volume Computation Overview

• Find all vertices of output object.
• For each vertex, find location

and local geometry.
• Sum over vertices, applying for-

mula.
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Finding the Vertices

Finding the Vertices

3 types of output vertex:
• Input vertex,
• Edge–face intersection,
• Face–face–face intersection.

• Find possible output vertices, and filter.
• An output vertex must not be contained in

any input cube.
• Isn’t intersecting all triples of faces,

then testing each candidate output vertex
against every input cube too slow?

• No, if we do it right.
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3D Uniform Grid

3D Uniform Grid

Summary
• Overlay a uniform 3D grid on the universe.
• For each input primitive — cube, face, edge — find overlapping cells.
• In each cell, store set of overlapping primitives.
Properties
• Simple, sparse, uses little memory if well programmed.
• Parallelizable.
• Robust against moderate data nonuniformities.
• Bad worst-case performance: defeatable by extremely nonuniform

data.
• Ditto any hierarchical method like octree.
Advantage
• Intersecting primitives must occupy the same cell.
• The grid filters the set of possible intersections.
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Covered Cell Concept

Covered Cell Concept

Optimization to prune objects before pairwise intersection tests.

• Only visible intersections contribute to the
output.

• That’s often a small fraction - inefficient.
• Solution: add the cubes themselves to the

grid.
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Adding the Cubes Themselves to the Grid

Adding the Cubes Themselves to the Grid

• For each cubes, find cells it completely cov-
ers.

• When cell completely covered by a cube:
nothing in that cube can contribute to the
output. So:

• Find covered cells first.
• Do not insert objects into covered cells.
• Intersect pairs and triples of objects in non-

covered cells.

When cell size somewhat smaller than edge size, almost no hidden
intersections found. Good.
Expected time = θ(size(input) + size(useful intersections)).
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Filter Possible Intersections

Filter Possible Intersections

... by superimposing a uniform grid on the scene.
• For each input primitive (cube, face, edge), find which cells it

overlaps.
• With each cell, store the set of overlapping primitives.
• Expected time = (size(input) + size(useful intersections)).
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Uniform Grid Qualities

Uniform Grid Qualities

• Major disadvantage: It’s so simple that it apparently cannot work,
especially for nonuniform data.

• Major advantage: For the operations I want to do (intersection,
containment, etc), it works very well for any real data I’ve ever tried.

USGS Digital Line Graph / VLSI Design / Mesh
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Uniform Grid Time Analysis

Uniform Grid Time Analysis

Show that time to find edge–edge intersections in E2 is linear in
input+output size regardless of varying number of edges per cell.
• N edges, length L, G ×G grid, η edges per cell.
• η = λη = N

G2 (LG + 1)

• Poisson distribution, parameter λη.
• Expected number of edge–edge tests: (η2 − η)

• η = λη and η2 = λη
2 + λη.

• Expected number of intersection tests per cell: λη2 = N2

G4 (LG + 1)2

• Expected total number of intersection tests, over the G2 cells:
N2

G2 (LG + 1)2.
• Total time: insert edges into cells + test for intersections

T = Θ
(

N(LG + 1) + N2

G2 (LG + 1)2
)

.

• Minimized when G = Θ(1/L), giving T = Θ
(
N + N2L2).

• Q.E.D.
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Face–Face–Face Intersection Details

Face–Face–Face Intersection Details

• Iterate over grid cells.
• In each cell, test all triples of faces, each from a different cube.
• Three faces intersect if their planes intersect, and the intersection is

inside each face (2D point containment).
• Then look up si in a table and update accumulating volume.
• Implementation easier for cubes.
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Point Containment Testing

Point Containment Testing

• P is a possible vertex of the output union polyhedron.
• Is point P contained in any input cube?

Answer:
• Find which cell, C, contains P.
• If C is completely covered by some cube then P is inside the

covering cube.
• Otherwise, test P against all the cubes that overlap C.
• Expected number of such cubes is constant, under broad conditions.
• Expect test time per P: constant.
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Face–Face-Face Intersection Execution Time

Face–Face-Face Intersection Execution Time

• N: number of cubes
• L: edge length, 1× 1× 1 universe.
• Expected number of 3-face intersections = θ

(
N3L6).

Effect of Grid
• Choose G: number of grid cells on a side = 2/L.
• Number of face triples: N3

• Prob. of a 3-face test succeeding = N−2L6.
• Depending on asymptotic behavior of L(N), this tends to 0.
• Prob. of 3 tested faces actually intersecting = c, indep. of N and L(N).
• Big improvement!
Effect of Covered Cells
• Expected number of 3-face intersections = θ(N3L6).
• However, for uniform i.i.d. input, expected visible number: θ(N).
• Prob. computed intersection is visible = c, indep. of N and L(N).
• Time to test if a point is inside any cube also constant.
• Total time reduces to θ(N) .
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Parallel Implementation

Parallel Implementation

(In progress)
• Can’t slice up the input spatially: increases area edge length.
• Inserting objects into cells quicker than intersection testing.
• Solution:

• Insert {cubes, faces, edges} into the cells.
• Distribute cells among threads.

• Each thread reads much data, but writes only 3 words: its
contribution to the volume, area, length.
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Implementation

Implementation

• Very compact data structures.
• Linear congruential rng not random for geometry, so use:
• Random (Tausworth generator) uniform i.i.d. cubes.
• 1000 executable lines of C++.
• Run on dual 3.4GHx Xeon, 128GB memory.

• Small Datasets are Fast: N = 104, L = 1/20, G = 40: T=0.64s,
V=0.676, A=40.

• Medium: N = 106, L = 1/100, G = 200: T=37s, V=0.6, A=222.
3,125,877 output vertices, 2,775,644 face-face-face intersections.

• Large Datasets are Feasible: N = 107, L = 1/200, G = 400:
T=395s, V=0.685, A=443. 24,868,405 output vertices, 33,996,760
face-face-face intersections.

•
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Implementation Validation

Implementation Validation

It compiles and runs w/o crashing; why look for trouble?
• • Terms summed for volume are large and mostly cancel.

• Errors unlikely to total to a number in [0,1].

• • Expected volume: 1−
(
1− L3)N .

• Compare to computed volume.
• Assume that coincidental equivalence is unlikely.

• Construct specific, maybe degenerate, examples with known volume.
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Extensions

Extensions

To general boolean ops:
• Intersection of many convex polyhedra quite easy.
• Any boolean op expressible as union of intersections (common

technique in logic design for computer HW).
To general polyhedra:
• Formulae are messier.
• Roundoff error would be biggest problem.
• Fatal to miss an intersection.
• Compute using rationals, perhaps with CGAL.
• Time cost: factor of 100?
Testing polyhedron validity: Illegal volume or volume change after rigid
transformation→ invalid.
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Summary — To Process Big Geometric Datasets on Parallel
Machines

Summary — To Process Big Geometric Datasets on
Parallel Machines

Guiding principles:

• Use minimal possible topology, and compact data structures.
• Short circuit the evaluation of volume(union(cubes)).
• Design for expected, not worst, case input.
• External data structures unnecessary, tho possible.

Allows very large datasets to be processed quickly in 3-D.
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