
1 © IWA Publishing 2013 Journal of Hydroinformatics | in press | 2013

Uncorrected Proof
A linear time algorithm to compute the drainage network

on grid terrains

Salles V. G. Magalhães, Marcus V. A. Andrade, W. Randolph Franklin

and Guilherme C. Pena
ABSTRACT
We present a new and faster internal memory method to compute the drainage network, that is, the

flow direction and accumulation on terrains represented by raster elevation matrices. The main

idea is to surround the terrain by water (as an island) and then to raise the outside water level step

by step, with depressions filled when the water reaches their boundary. This process avoids the very

time-consuming depression filling step used by most of the methods to compute flow routing,

that is, the flow direction and accumulated flow. The execution time of our method is very fast, and

linear in the terrain size. Tests have shown that our method can process huge terrains more than

100 times faster than other recent methods.
doi: 10.2166/hydro.2013.068
Salles V. G. Magalhães
Marcus V. A. Andrade (corresponding author)
Guilherme C. Pena
Department of Informatics (DPI),
Universidade Federale de Viçosa,
Viçosa,
Brazil
E-mail: marcus.ufv@gmail.com

W. Randolph Franklin
ECSE – Rensselaer Polytechnic Institute,
Troy, NY,
USA
Key words | flow accumulation, flow direction, hydrology, terrain modeling
INTRODUCTION
An important component of terrain analysis in geographic

information systems (GIS) is the computation of hydrologic

structures such as flow direction and accumulated flow.

These structures are usually extracted from digital elevation

models (DEMs) stored as matrices. The critical issues for

computing these elements are assigning directions over flat

areas and processing depressions. Traditionally, the

depressions are removed by increasing the cell’s elevation

to the minimal elevation of the cells on the depression

boundary. Then the flow over the flat area is directed to

the lowest cells on the flat area boundary. All that is very

time-consuming. The long execution time of those oper-

ations is more critical now because of many huge terrains

available covering broad regions with very high resolution,

from STRM (SRTM ) and IFSARE (Jakowatz et al. ).

As described byMetz et al. (), even with recent signifi-

cant advances in flow routing algorithms, accurate extraction

of drainage networks from DEMs remains challenging. The

problems are the depressions and flat areas arising during

the DEM generation, from interpolation errors or the limited

spatial resolution used. Usually they arise because of the
interference during the elevation mapping and the majority

of depressions are spurious. Thus, they need to be removed

before the flow routing computation.

There are many methods for handling depressions and

flat areas. Most of them (O’Callaghan & Mark ;

Tarboton ; Planchon & Darboux ; Arge et al.

; Zhu et al. ; Wang & Liu ; Danner et al.

; Yong-he et al. ) remove depressions by increasing

the cell’s elevation and then direct the flow over the flat area

to the lowest cells on the flat area boundary. Some others

(Grimaldi et al. ; Santini et al. ) after sink filling,

force a flow direction by creating a gradient in the flat areas.

Those strategies, which modify the elevation values to

remove the depressions, assume that they are artifacts intro-

duced during the digital model generation. Recently, Metz

et al. () described an alternative approach based on Ehls-

chlaeger () to handle depressions using the least cost

drainage paths where the elevation values are not changed.

This method is implemented in GRASS (GRASS ), an

open source/free general purpose geographical information

system.

mailto:marcus.ufv@gmail.com


2 S. V. G. Magalhães et al. | A linear time drainage network algorithm Journal of Hydroinformatics | in press | 2013

Uncorrected Proof
In this paper, we present a new and faster terrain flow

computation method that surrounds the terrain by water

(as an island) and then raises the outside water level step

by step filling the depressions when the water reaches

their boundary. The implementation execution time of our

method is very fast, and linear in the terrain size. It was

tested against some other methods, both classic and

recent, such as ArcGIS and GRASS modules r. watershed

(Metz et al. ) and r. terraflow (Arge et al. ). As the

tests have shown, our method can process huge terrains

more than 100 times faster than existing methods.
THE PROPOSED ALGORITHM

The basic idea of the proposed algorithm, named RWFlood,

is to remove the depressions by simulating the raising of an

imaginary ocean that surrounds the terrain. In this process,

the terrain is supposed to be an island surrounded by water

that is iteratively raised. When the water level increases, it

gradually floods the terrain cells and when it reaches a

depression, it is filled by ‘water’. That is, in the beginning,

the water level is set to the elevation of the lowest cell

in the terrain boundary, which means that these lowest

cells are flooded. Then all cells adjacent to these flooded

cells are stored for future processing. But, those cells that

are lower than the current water level are raised to the cur-

rent level (see Figure 1).

While similar to Yong-he et al. (), RWFlood is much

improved. Since the terrain elevations can be stored as 16-

bit integers (Farr et al. ; SRTM ), it is possible to

raise the water level in discrete increments. That is, the

water level is initialized to the lowest elevation in the terrain

boundary and, at each step, it is incremented by 1 until it

reaches the highest terrain elevation. In this process,

RWFlood uses an array Q of queues for the cells that need

to be stored for later processing such that Q contains one

queue for each elevation – queue Q[m] stores the cells (to

be processed) with elevation m. Initially, each cell in the ter-

rain boundary is inserted into the corresponding queue.

Supposing the lowest cells have elevation k, the process

starts at queue Q[k] and, for each elevation z (water level)

such that Q[z] is not empty, a cell is removed (conceptually,

it is flooded) and its neighbors are visited. That is, given a
neighboring cell v, if v has already been visited, it is done;

on the other hand, if v has not been visited yet, and if its

elevation is not lower than z, it is inserted in its correspond-

ing queue; otherwise, if its elevation is lower than z, the

elevation is set to z and it is inserted into Q[z]. Notice that

the latter case corresponds to flood a depression point.

Figure 1 illustrates this process: in Figure 1(a) the water

level is 70 m (no depression was flooded yet). Figure 1(b)

shows the water level after some iterations (10 in the

case); notice the depressions in the center of the terrain

are below the water level but they are not flooded yet

because they are not neighbors to the water. In Figure 1(c),

the water level is 99 m and the cells in queue Q[99] are pro-

cessed (only cells neighbors to the water were inserted in the

queues). In this process, the 100 m cell elevation, in the

rightmost peak, is inserted into the queue Q[100] and,

when the water level is set to 100 m, the cells in Q[100]

are processed (Figure 1(d)). Thus, the depression is now

neighbor to the water and the cells’ elevation in the

depression are set to 100 m. Figure 1(e) shows the water

level at 105 m.

The algorithm in Figure 2 shows the pseudocode for

RWFlood. First, it creates an array Q of queues with indices

ranging from the minimum elevation in the terrain boundary

(minElev) to the maximum elevation in the terrain (maxE-

lev). Then, cells in the terrain boundary are inserted into

their corresponding queue and their directions are set to out-

side the terrain. After inserting the terrain border cells into

the queues, the ocean level z is initialized with minElev

and raised step by step to maxElev. Given a water level z,

the cells in the queue Q[z] are processed (‘flooded’). Notice

that, when a cell c is processed, all cells adjacent to c that

are inserted in a queue have their flow direction set to c.

That is, the water in the adjacent cells flows to the cell c

(conceptually, the flow direction is set to the opposite direc-

tion as the water gets into the cells). The direction of a cell is

also used to check if that cell was not visited yet, that is, a

flow direction null means the cell was not visited.

The cells in a flat area will be processed using a similar

approach as in other methods such as Terraflow (Arge et al.

) and r. watershed (Metz et al. ), that is, the flow in a

flat area will be directed to the spill point(s) (the cell(s) in

the flat area boundary having a lower neighbor cell). In

Figure 3 a portion of terrain is shown that includes a flat



Figure 1 | The flooding process in five water levels: (a) 70 m, (b) 80 m, (c) 99 m Q1, (d) 100 m, (e) 105 m.

3 S. V. G. Magalhães et al. | A linear time drainage network algorithm Journal of Hydroinformatics | in press | 2013

Uncorrected Proof
area (light gray cells), surrounded by higher cells (dark gray),

having two spill points (s1 and s2). After processing the spill

points s1 and s2 (Figure 3(a)), the flow direction of the

neighbor cells ( f1, f2, f3, and f4) is set to these spill points

(Figure 3(b)) and these cells are included in the queue corre-

sponding to their elevation. Since the cells in the flat area

have the same elevation, they will be in the same queue

and, therefore, this processing will be done in a DFS

order. Thus, the cells in a flat area will have directions set

to the shortest path to the spill points (Figure 3(c)).

The method described above supposes the terrain

elevations are represented using integer values as is usual
in SRTM data. However, it is possible to adapt the code to

process the terrain if the elevation data are stored using

another format. For example, if the elevation is stored

using real values with a precision of 10 centimeters and con-

sidering that the terrain elevations range from �424 to

8,850 m (the smallest and highest elevations on the Earth),

it is possible to convert the data multiplying it by 10 and

dropping its fractional component off. So, the data would

require an array with (8,850� (�424)) × 10¼ 92,740

queues to be processed. Notice that, even if this array of

queues is sparse, the space used to store the empty queues

is usually very small compared to the space required to



Figure 2 | RWFlood algorithm: Fill depressions and compute flow directions.

4 S. V. G. Magalhães et al. | A linear time drainage network algorithm Journal of Hydroinformatics | in press | 2013

Uncorrected Proof
store other data structures such as the terrain digital

elevation matrix.

It is important to mention that while RWFlood auto-

matically determines the flow direction of each cell during

the flooding process, the Yong-he et al. () method uses

this similar flooding strategy only to remove the terrain

depressions (it does not compute the flow direction). Thus,

it is only a preprocessing step to remove the depressions

that can be used by other flow direction methods. Addition-

ally, another important improvement of RWFlood when

compared to Yong-he et al.’s () method is the time

required to manage the cells during the flooding process,

that is, storing the cells that need to be processed later and

obtaining the next cell to be processed. In RWFlood,

thanks to the use of the array of queues, both inserting a

cell and obtaining the next cell take a constant time while

in Yong-he et al.s () method, where a priority queue is
Figure 3 | Flat area processing: (a) a flat area (light gray cells) surrounded by higher cells (dark g

direction of the neighbor cells f1, f2, f3, and f4 is set and, after some iterations, the
used, both operations take O(log m) time where m is the

queue size (that, in the worst case, can have the same

order of magnitude as the terrain size).

After computing the flow direction, RWFlood uses an

algorithm based on graph topological sorting to compute

the accumulated flow (see Figure 4). Conceptually, the

idea is to process the flow network as a graph where each

terrain cell is a vertex and there is a directed edge connect-

ing a cell c1 to a cell c2 if and only if c1 flows to c2. Initially,

all vertices in the graph have 1 unit of flow. Then, in each

step, a cell c with in-degree 0 is set as visited and its flow

is added to next(c)’s flow where next(c) is the cell following

c in the graph. After processing c, the edge connecting c to

next(c) is removed (i.e. next(c)’s in-degree is decremented)

and if the in-degree of next(c) becomes 0, next(c) is also

similarly processed.

As one can see, the proposed algorithm is very simple

and its complexity is linear in the terrain size. Since, in

the first step (flow direction computation) each terrain cell

is inserted and removed from a queue exactly only one

time and both are constant time operations. The second

step (computing the flow accumulation) is based on the

topological sorting which is linear time too.
EXPERIMENTAL ANALYSIS

The proposed algorithm RWFlood was experimentally eval-

uated comparing its execution time against other widely

used methods such as ArcGIS version 9.0 and the methods

Terraflow (Arge et al. ) and Watershed (Metz et al. )

included in GRASS GIS 6.4 as the modules r. terraflow and

r. watershed.
ray) having two spill points s1 and s2; (b) after processing the spill points s1 and s2, the flow

flow direction of the cells in the flat area is set (c).



Table 1 | Processing time for different regions and terrain sizes

Processing time (in seconds)

Terrain
dataset

Size (No.
cells) RWFlood r. watershed r. terraflow ArcGIS

1 5,0002 5 47 405 293
10,0002 14 233 2,075 3,860
20,0002 68 8,776 9,924 17,509

2 5,0002 3 48 401 376
10,0002 16 242 2,059 2,869
20,0002 73 9,063 10,015 13,707

3 5,0002 5 44 411 219
10,0002 27 231 2,106 1,586
20,0002 125 9,185 10,140 7,693
30,0002 1062 74,135 24,746 26,338

4 5,0002 5 46 389 264
10,0002 27 246 2,038 1,449
20,0002 145 9,374 9,804 8,546
30,0002 912 81,195 24,013 33,829

Figure 4 | Algorithm to compute the flow accumulation.

5 S. V. G. Magalhães et al. | A linear time drainage network algorithm Journal of Hydroinformatics | in press | 2013

Uncorrected Proof
The r. watershed module is an efficient method for com-

puting flow direction and flow accumulation in terrains

stored in internal memory. While the older versions of r.

watershed were very slow for processing of large terrains

(Arge et al. ; Danner et al. ), the version evaluated

in this paper implements a fast flow computation algorithm

proposed by Metz (Metz et al. ) which is, as far as we

know, the fastest flow computation method designed for

internal memory processing.

However, for huge terrains, the r. watershed module

may need more memory than that available internally.

Thus, the method needs to do external memory processing

and so, r. terraflow module may be more efficient than

r. watershed since Terraflow is an I/O efficient (Arge et al.

) algorithm designed to process huge terrains. There-

fore, in the tests, both methods included in GRASS

(r. watershed and r. terraflow) were executed.

As well as the processing time, the coherence of the flow

network obtained by RWFlood algorithm was also evaluated

comparing it against the networks computed using GRASS.
Figure 5 | Processing time of RWFlood, Watershed, Terraflow, and ArcGIS executed in

dataset 1.
PERFORMANCE TESTS

The algorithm RWFlood was implemented in Cþþ, com-

piled using gþþ 4.5.2, and several tests were done to

evaluate its execution time. All tests were executed in a

Core 2 Duo machine with 2.8 GHz and 4 GB of memory.
RWFlood, r. watershed, and r. terraflow were executed in

the Ubuntu Linux 11.04 64bit Operating System, and

ArcGIS in the Windows XP 32bit Operating System.

We generated terrains with different dimensions using

SRTM data representing four different regions. Table 1

and charts in Figures 5 and 6 show the four methods’ proces-

sing time on those terrains. Notice that, in all tests, the

RWFlood was much faster than all the other three methods

and, in many cases, it was more than 100 times faster.

As expected, the internal memory processing (when

possible) is more efficient than the external processing. In

particular, considering the results presented in Table 1, all

the internal memory methods were faster than r. terraflow



Figure 6 | Processing time of RWFlood, Watershed, Terraflow, and ArcGIS executed in

dataset 3.

Figure 7 | Processing time graph of RWFlood and Terraflow considering larger terrain

portions.

Table 2 | RWFlood and r. terraflow processing time considering larger terrain portions

Processing time (sec.)

Terrain Size (No. cells) RWFlood r. terraflow

Dataset 4 5,0002 5 389
10,0002 27 2,038
15,0002 72 5,044
20,0002 145 9,804
25,0002 288 15,838
30,0002 912 24,013
35,0002 2,798 32,123
40,0002 8,872 44,965
45,0002 18,515 51,290
50,0002 103,572 66,703

6 S. V. G. Magalhães et al. | A linear time drainage network algorithm Journal of Hydroinformatics | in press | 2013

Uncorrected Proof
for terrains having 20,0002 cells or less. And, r. terraflow

became more efficient than r. watershed and ArcGIS for ter-

rains with about 20,0002 and 25,0002 cells respectively.

However, even for terrains with 30,0002 cells, r. terraflow

was slower than RWFlood.

Although the RWFlood complexity is linear in the ter-

rain size (as described in the section, The proposed

algorithm) the execution time presented in Table 1 seems

to grow more than linearly with the terrain size, but this

nonlinear behavior can be explained mainly because of the

random access to the terrain matrix since the access time

to huge matrices cells depends on the access pattern

(sequential or not) and the memory hierarchy, in particular,

the cache memory size.

Of course, there comes a point when the terrain cannot

be processed in the internal memory by RWFlood and so,

the external memory methods such as r. terraflow will be

more efficient than it. Thus, to compare the performance

of RWFlood and r. terraflow in very huge terrains, more

tests were executed considering portions of the terrain in

dataset 4 with larger sizes (see Table 2 and Figure 7).

Notice that RWFlood was faster than r. terraflow for ter-

rains with 2 × 109 (about 45,0002) cells or less and its

execution time became higher only for terrains having

about 50,0002 cells or more when the terrains need to be

processed using the external memory. This threshold is

much larger than the terrain size for which r. watershed

and ArcGIS became slower than r. terraflow. It happens

because RWFlood was very carefully implemented to save

memory and, thus, it can process huge terrains in internal

memory. It does not use a priority queue, as do many

other methods, to organize the terrain cells when removing
the depressions. Instead, it uses an array of queues, one for

each elevation, and so the cells can be processed in constant

time. Also, the flow direction is determined simultaneously

to the depression removal – many other methods can only

compute the flow direction after removing all depressions.

And, the idea of raising water and flooding the cells makes

the depression filling very fast and simple. Finally, instead

of creating a structure to store all the non-visited cells

during the flooding step, the cell’s flow direction attribute

is used as a flag to indicate if a cell was visited or not.

In conclusion, RWFlood was much faster than r. water-

shed (the current fastest internal memory method) and, also,

RWFlood was able to process terrains much bigger than

could r. watershed. Thus, besides being faster, RWFlood

can postpone the point where methods designed for external

memory processing are better than internal memory

methods. For example, as the tests have shown, using 4

GB of memory, RWFlood is more efficient than r. terraflow



7 S. V. G. Magalhães et al. | A linear time drainage network algorithm Journal of Hydroinformatics | in press | 2013

Uncorrected Proof
for terrains with up to 109 cells and, as one may expect, this

terrain size could be bigger using more internal memory.
COMPARING THE FLOW NETWORKS

The accuracy of the flow network obtained by RWFlood

algorithm was also evaluated. Figure 8 shows the networks

obtained by RWFlood and GRASS (r. watershed) in datasets

1 and 3. Notice that, the two networks from dataset 1 are

very similar and the networks from dataset 3 are also similar

but have small differences mainly in flat areas (as indicated
Figure 8 | Networks extracted by RWFlood ((a) and (c)) and by GRASS ((b) and (d)) in datasets
by the rectangles), which can be explained because the

methods use different strategies to process flat areas.
CONCLUSIONS

We presented a simple and very fast internal memory algor-

ithm for computing the flow network (that is, flow

accumulation and flow direction) on terrains represented

by an elevation matrix. The algorithm is linear in the terrain

size and its processing time was compared against some

other classic and recent methods included in GRASS
1 (first row) and 3 (second row).



8 S. V. G. Magalhães et al. | A linear time drainage network algorithm Journal of Hydroinformatics | in press | 2013

Uncorrected Proof
(r. watershed and r. terraflow) and ArcGIS. As tests have

shown, the proposed method was much faster (in some

cases, more than 100 times) than the other methods. Also,

it was able to process efficiently, in the internal memory, ter-

rains larger than other internal memory methods did.

A next step is to adapt the flooding process based on

raising the water level to compute other hydrological fea-

tures, such as the ridge lines and watershed. The RWFlood

source code can be downloaded from www.dpi.ufv.br/

~marcus/RWFlood.
ACKNOWLEDGEMENTS

This research was partially supported by FAPEMIG – The

Minas Gerais State Research Foundation, CAPES, CNPq –

National Council for Scientific and Technological

Development and NSF grants CMMI-0835762 and IIS-

1117277.
REFERENCES
Arge, L., Chase, J. S., Halpin, P., Toma, L., Vitter, J. S., Urban, D.
& Wickremesinghe, R.  Flow computation on massive
grid terrains. Geoinformatica 7 (4), 283–313.

Danner, A., Agarwal, P. K., Yi, K. & Arge, L.  Terrastream:
from elevation data to watershed hierarchies. In Proc. ACM
Sympos. on Advances in Geographic Information Systems,
pp. 212–219.

Ehlschlaeger, C.  Using the A* search algorithm to develop
hydrologic models from digital elevation data. In:
International Geographic Information Systems (IGIS)
Symposium. 18–19 March, Baltimore, MD, pp. 275–281.

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley,
S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D.,
Shaer, S., Shimada, J., Umland, J., Werner, M., Oskin, M.,
Burbank, D. & Alsdorf, D.  The shuttle radar topography
mission. Rev. Geophys. 45, RG2004þ .

GRASS  Geographic Resources Analysis Support System
(GRASS GIS) Software. Open Source Geospatial Foundation.
Available at: http://grass.osgeo.org (accessed 11/05/2013).

Grimaldi, S., Nardi, F., Benedetto, F. D., Istanbulluoglu, E. & Bras,
R. L.  A physically-based method for removing pits in
digital elevation models. Adv. Water Resour. 30, 2151–2158.

Jakowatz Jr, C. V., Wahl, D. E., Eichel, P. H., Ghiglia, D. C. &
Thompson, P. A.  Spotlight-Mode Synthetic Aperature
Radar: A Signal Processing Approach. Kluwer Academic
Publishers, Boston, MA.

Metz, M., Mitasova, H. & Harmon, R. S.  Efficient extraction
of drainage networks from massive, radar-based elevation
models with least cost path search. Hydrol. Earth System Sci.
15, 667–678.

O’Callaghan, J. F. & Mark, D. M.  The extraction of drainage
networks from digital elevation data. Comput. Vis. Graph. 28,
323–344.

Planchon, O. & Darboux, F.  A fast, simple and versatile
algorithm to fill the depressions of digital elevation models.
Catena 46, 159–176.

Santini, M., Grimaldi, S., Nardi, F., Petroselli, A. & Rulli, M. C.
 Pre-processing algorithms and landslide modelling on
remotely sensed dems. Geomorphology 113, 110–125.

SRTM  SRTM Topography Documentation. Available at:
http://dds.cr.usgs.gov/srtm/version21/Documentation/
(accessed 11/05/2013).

Tarboton, D. G.  A new method for the determination of flow
directions and upslope areas in grid digital elevation models.
Water Resour. Res. 33, 309–319.

Wang, L. & Liu, H.  An efficient method for identifying and
filling surface depressions in digital elevation models for
hydrologic analysis and modeling. Int. J. Geogr. Inform. Sci.
20, 193–213.

Yong-he, L., Wan-Chang, Z. & Jing-Wen, X.  Another fast and
simple dem depression-filling algorithm based on priority
queue structure. Atmos. Ocean. Sci. Lett. 2, 117–120.

Zhu, Q., Tian, Y. & Zhao, J.  An efficient depression
processing algorithm for hydrologic analysis. Comput.
Geosci. 32, 615–623.
First received 27 May 2013; accepted in revised form 15 October 2013. Available online 14 November 2013

http://www.dpi.ufv.br/~marcus/RWFlood
http://www.dpi.ufv.br/~marcus/RWFlood
http://dx.doi.org/10.1023/A:1025526421410
http://dx.doi.org/10.1023/A:1025526421410
http://dx.doi.org/10.1029/2005RG000183
http://dx.doi.org/10.1029/2005RG000183
http://grass.osgeo.org
http://grass.osgeo.org
http://dx.doi.org/10.1016/j.advwatres.2006.11.016
http://dx.doi.org/10.1016/j.advwatres.2006.11.016
http://dx.doi.org/10.5194/hess-15-667-2011
http://dx.doi.org/10.5194/hess-15-667-2011
http://dx.doi.org/10.5194/hess-15-667-2011
http://dx.doi.org/10.1016/S0734-189X(84)80011-0
http://dx.doi.org/10.1016/S0734-189X(84)80011-0
http://dx.doi.org/10.1016/S0341-8162(01)00164-3
http://dx.doi.org/10.1016/S0341-8162(01)00164-3
http://dx.doi.org/10.1016/j.geomorph.2009.03.023
http://dx.doi.org/10.1016/j.geomorph.2009.03.023
http://dds.cr.usgs.gov/srtm/version21/Documentation/
http://dds.cr.usgs.gov/srtm/version21/Documentation/
http://dx.doi.org/10.1029/96WR03137
http://dx.doi.org/10.1029/96WR03137
http://dx.doi.org/10.1080/13658810500433453
http://dx.doi.org/10.1080/13658810500433453
http://dx.doi.org/10.1080/13658810500433453
http://dx.doi.org/10.1016/j.cageo.2005.09.001
http://dx.doi.org/10.1016/j.cageo.2005.09.001


Author Queries
Journal: Journal of Hydroinformatics

Manuscript: HYDRO-D-13-00068

Q1 In supplied Figure 1 is not sufficient print quality. Please resupply as a high resolution file (300 dpi or above)
with sharp lines and text.


	A linear time algorithm to compute the drainage network on grid terrains
	INTRODUCTION
	THE PROPOSED ALGORITHM
	EXPERIMENTAL ANALYSIS
	PERFORMANCE TESTS
	COMPARING THE FLOW NETWORKS
	CONCLUSIONS
	This research was partially supported by FAPEMIG - The Minas Gerais State Research Foundation, CAPES, CNPq - National Council for Scientific and Technological Development and NSF grants CMMI-0835762 and IIS-1117277.
	REFERENCES




