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Abstract We present EMFlow, a very efficient algorithm and its implemen-
tation, to compute the drainage network (i.e. the flow direction and flow
accumulation) on huge terrains stored in external memory. Its utility lies in
processing the large volume of high resolution terrestrial data newly available,
which internal memory algorithms cannot handle efficiently.

EMFlow computes the flow direction using an adaptation of our previous
method RWFlood that uses a flooding process to quickly remove internal
depressions or basins. Flooding, proceeding inward from the outside of the
terrain, works oppositely to the common method of computing downhill flow
from the peaks.

To reduce the total number of I/O operations, EMFlow adopts a new
strategy to subdivide the terrain into islands that are processed separately. The
terrain cells are grouped into blocks that are stored in a special data structure
managed as a cache memory.

EMFlow’s execution time was compared against the two most recent and
most efficient published methods: TerraFlow and r.watershed.seg. It was, on
average, 27 times faster than both methods, and EMFlow could process larger
datasets. Processing a 50000x50000 terrain on a machine with 2GB of internal
memory took only 3000 seconds, compared to 87000 seconds for TerraFlow
while r.watershed.seg failed on terrains larger than 15000x15000. On very small,
say 1000x1000 terrains, FMFlow takes under a second, compared to 6 to 20
seconds, so it could be a component of a future interactive system where a user
could modify terrain and immediately see the new hydrography.
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1 Introduction

Many important applications in Geographical Information Science (GIS), such
as hydrology, visibility and routing, require terrain data processing. These
applications have become a challenge for GIS because they have to process
a huge volume of high resolution terrestrial data. On most computers, the
internal memory algorithms do not run well on such volumes of data since
a large number of I/O operations is necessary. For example, NASA’s Shuttle
Radar Topography Mission (SRTM) acquired 30 meter resolution terrain data
for much of the world, generating about 10 terabytes of data. The datasets
can be even bigger considering the technological advances that allow data
acquisition at sub-meter resolution.

Thus, it is important to optimize the massive data processing algorithms
simultaneously for computation and data movement between external and
internal memory since processing data in external memory takes much more
time. That is, the algorithms for external memory processing must be designed
and implemented to minimize the number of I/O operations for swapping data
between main memory and disk.

More precisely, the algorithms for external memory processing should be
designed and analyzed considering a computational model where the algorithm
complexity is evaluated based on data transfer operations instead of CPU
processing operations. A model often used, proposed by [1], defines an I/O
operation as the transfer of one disk block of size B between external and
internal memory; the performance is measured by the number of such I/O
operations. The internal computation time is assumed to be comparatively
insignificant. The algorithm complexity is defined based on the number of I/0O
operations executed by fundamental operations such as scanning or sorting n
contiguous elements stored in external memory. Those are scan(n) = 0(n/B)

and sort(n) =6 (% logr/ B %), where M is the internal memory size.

Hydrological applications generally require computing the drainage network
of a terrain, consisting of the flow direction and flow accumulation. Intuitively,
they are the path that water flows through the terrain and the amount of water
that flows into each terrain cell supposing that each cell receives a rain drop [9)].
As broadly described [2, 4, 7, 8], it is a very time-consuming process, mainly on
huge terrains requiring external memory processing. Indeed, in many situations,
the flow direction can not be straightforwardly determined as for example, in a
local minimum terrain cell.

In this paper, we present a new method, named FMFlow, for computing
the drainage network on huge terrains represented by a digital elevation matrix
stored in external memory. This new method adapts the RWFlood algorithm [7],
where the idea is to use a cache strategy to benefit from the spatial locality of
reference present in the sequence of accesses to the terrain matrix executed by
that algorithm. Additionally, to improve the cache efficiency, EMFlow adopts
a new (original) strategy to subdivide the terrain matrix into smaller pieces
(islands) that can be processed separately and uses the CacheAwareAccumula-



Computing drainage network in external memory 3

tion algorithm, proposed by Haverkort and Jenssen [5], for calculating the flow
accumulation .

The performance of EMFlow was compared against the most recent and
most efficient methods TerraFlow and r.watershed.seg, both included in the
open source GIS GRASS. The tests show that EMFlow can be more than 20
times faster than the fastest of them. Since processing of large terrains can
take hours, this is a significant improvement.

2 Background and Previous Work
2.1 Drainage Network Computation

As described previously, the drainage network of a terrain delineates the path
that water flows through the terrain (the flow direction) and the amount of
water that flows into each terrain cell (the flow accumulation). As formulated
by [2], the flow direction problem is to assign flow directions to all cells in the
terrain such that the following three conditions are fulfilled:

1. Every cell has at least one flow direction;
2. No cyclic flow paths exist; and
3. Every cell in the terrain has a flow path to the edge of the terrain.

The flow direction can be modeled considering single flow direction (SFD)
or multiple flow directions (MFD). In SFD, each terrain cell is assigned a
direction towards the steepest downslope neighbor, while in MFD, each cell has
directions to all downslope neighbors. The use of SFD or MFD is essentially a
modeling choice since the computational complexity of the flow routing problem
is the same in both models. This paper will use SED.

There are several methods to obtain the drainage network [2, 4, 6, 8, 15].
As described by those authors, the major challenge in the process is the flow
routing in local minimum and flat areas. A local minimum is a cell with no
downslope neighbor and a flat area is a set of adjacent cells with a same elevation.
A neighbor cell of ¢ is called a downslope neighbor if it has a strictly lower
elevation than c. A cell in a flat area that has a downslope neighbor is called a
spill-point. Also, a flat area can be classified as a plateau or a sink where the
plateau has a spill point and a sink doesn’t. Intuitively, water will accumulate
in a sink until it fills up and water flows out of it [6], while in the plateau the
water should flow towards spill points.

Usually, most drainage network computation methods, as for example [2, 4,
8, 13], use a preprocessing step to remove the sinks and the flat areas. Initially,
the elevation of the cells belonging to a sink are increased to transform it into
a plateau. Next, the flow directions on the plateau are assigned to ensure that
there is a path from each cell to the nearest spill point.

After obtaining the flow direction, the next step is to compute the flow
accumulation in each terrain cell, that is, the amount of water flowing to each
cell supposing that all cells receive a drop of water and this water follows the
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direction obtained in the previous step. Several methods for flow accumulation
computation are based on graph topological sorting [2, 10, 13] while [14] models
this problem as a linear equation system.

According to Planchon et al. [11], the drainage network computation requires
a considerable amount of processing, mainly due to the preprocessing step
to remove depressions and flat areas. In fact, in most methods based on this
strategy, more than 50% of the total processing time is spent by this step. To
avoid this time-consuming step, Magalh&es et al. [7] recently proposed a new
method, named RWFlood, described later in Section 3.1. As shown in [7], this
method is more than 100 times faster than other recent methods but it does
not scale well when the terrain does not fit in internal memory.

2.2 Algorithms for Computing Drainage Network in External Memory

Several GIS implement algorithms for flow direction and flow accumulation.
However most of these algorithms were designed assuming that the terrain can
be stored in internal memory and therefore they often do not scale well to large
datasets [2]. On the other hand, there are some methods recently developed
to process huge volumes of data in external memory such as TerraFlow and
r.watershed.seg, both available in GRASS GIS.

2.2.1 TerraFlow

TerraFlow is an efficient method, proposed by Arge et al. [2], to compute
hydrological elements as drainage network and watershed in large terrains
stored in external memory. It was implemented from the model proposed by [1].
To improve performance, it uses the special library TPIF for data management,
replacement and movement between internal and external memory.

The flow direction is computed in several steps. Initially, the plateaus and
sinks are identified and the flow directions on non-flat areas are determined.
Next, the flow directions on plateaus are assigned and then the depressions are
identified and filled (removed). Finally, the flow directions on these areas are
determined.

The flow accumulation is computed taking the elevation grid and the flow
direction grid as input. Then, assuming that each cell receives one unit of
water that flows according to the flow direction, the cells are processed using a
strategy called time forward processing, which uses a priority queue to process
the cells in a topological order.

As described by the authors, the TerraFlow complexity is ©(sort(n)) and
it uses some temporarily files whose total size may be up 80 times larger than
the original terrain file.

2.2.2 GRASS module r.watershed

The r.watershed is another GRASS module to obtain the drainage network.
It was initially developed for internal memory processing and adapted for
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external memory [8] using the GRASS segment library, which allows an efficient
processing of huge matrices in external memory.

The segment library provides a set of functions to manage huge matrices
stored in external memory. Basically, the matrix is subdivided into segments
(blocks) that are stored in temporary disk files. To improve the efficiency, a
given number of these segments are kept in internal memory. Thus, to access
a given matrix position, firstly, it is determined which segment contains that
position and, then the list of segments stored in internal memory is swept to
check if the corresponding segment is already loaded. If yes, the position is
accessed as usual, otherwise, the corresponding segment needs to be transferred
to internal memory. To avoid the segment list sweeping at each matrix access,
the last accessed segment is kept in the first position of the list and, thus,
consecutive accesses in a same segment are more efficient.

When loading a segment in memory, if there is no space available to store
the new segment, the segment having the longest time without being accessed
is evicted to open space. In the segment library implementation, the segments
have an “access time” field represented by an integer and every time a new
segment is accessed (that is, a segment that is not in the front of the list)
its access time is set to zero and the access time of all other segments are
incremented by 1. Thus, segment access can sometimes have a large CPU
overhead.

3 The EMFlow method

As described in Section 2.1, most methods for flow direction computation use
a very time-consuming preprocessing step to remove depressions and flat areas.
However, a new method is presented in [7], named RWFlood, which is much
more efficient than other classical methods, mainly because it does not perform
this preprocessing step and the depressions and flat areas are naturally handled
during the processing. As mentioned in Section 1, the purpose of current paper
is to adapt the RWFlood method for external memory processing.

3.1 RWFlood method

To avoid the time-consuming preprocessing step, RWFlood computes the
drainage network using a reverse order. Instead of determining the down-
hill flow it uses a flooding process similar to the approach described in [11].
But, it is important to notice that, in [11], this strategy is used only as a pre-
processing step for pit removal and otherwise, in RWFlood, the whole process
for computing the drainage network is based on this.

More precisely, the basic idea is: if a terrain is flooded by water coming
from outside and getting into the terrain through its boundary, then the course
of the water getting into the terrain will be the same as the water coming
from rain and flowing downhill. Thus, the idea is to suppose the terrain is
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surrounded by water (as an island) and to simulate a flooding process raising
the water level iteratively. When the water level rises, it gradually floods the
terrain cells and when it reaches a depression, that depression is filled.

Figure 1 illustrates the flooding process: in Figure 1(a) the whole terrain
is an island and next, in 1(b) the water level achieves the lowest cell in the
terrain boundary. The raising water process continues and, in 1(c) the water
starts to get into the terrain and a terrain depression is filled — see 1(d). The
flooding process can generate new islands as in 1(e). Finally, the process ends
when the whole terrain is flooded — see 1(f).

More formally, in the beginning, the water level is set to the elevation of the
lowest cell in the terrain boundary. Then, two steps are executed iteratively:

1. flooding a cell, and
2. raising the water level.

When flooding cell ¢, its neighbors are processed as follows. If a neighboring cell
d has not been processed yet, and its elevation is smaller than the elevation of
¢, then the elevation of d is raised to the elevation of ¢; also, the flow direction
of d is set to point to c.

When all cells having a same elevation as ¢ have been flooded, the water
level is raised to the elevation of the lowest cell higher than ¢ and the process
continues from this cell. To speed up the process of getting this next cell, we
use an array @ of queues to store the cells that need to be processed later. @
contains one queue for each elevation — queue Q[m] will store the cells with
elevation m that were already visited and need to be processed later. Initially,
each cell in the terrain boundary is inserted into the corresponding queue.

Supposing the lowest cells have elevation k, the process starts at queue Q[k]
and, after processing all cells in that queue, the process proceeds with the next
non-empty queue in the array @ (intuitively, meaning that the water level is
raised).

Let Q[z] be this next non-empty queue. The front cell is dequeued (concep-
tually, it is flooded) and its neighbors are visited. For each neighbor cell v, one
of three cases occurs.

1. If v has already been visited, there is nothing to do.

2. If v has not yet been visited and its elevation is not lower than z then it is
inserted in the proper queue.

3. If v has not yet been visited and its elevation is lower than z, then its
elevation is set to z and it is inserted into Q[z]. This corresponds to flooding
a depression cell.

This process continues until all the queues are empty; see Algorithm 1.

The flow direction of each cell is determined during the flooding process
since, when a cell ¢ is processed, all cells adjacent to ¢ that are inserted in a
queue have their flow direction set to ¢ (i.e., opposite to how the water floods
the cells). Initially, the flow direction of all cells in the terrain boundary is set
to out of the terrain.

After computing the flow direction, RWFlood uses an algorithm based on
graph topological sorting to compute the flow accumulation. The idea is to
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(e) )

Fig. 1 The flooding process: (a) the whole terrain is an island; (b) the water level is on the
lowest cell in the terrain boundary; (c) the water level is raised; (d) a depression is flooded;
(e) the flooding process creates two islands; (f) the flooding process is complete.

process the flow network as a graph. Each terrain cell is a vertex, and there
is a directed edge connecting a cell ¢; to a cell ¢y if and only if ¢; flows to co.
Initially, all vertices in the graph have 1 unit of flow. Then, in each step, a cell
¢ with in-degree 0 is set as visited and its flow is added to the nezt(c)’s flow
where next(c) is the cell following ¢ in the graph. After processing ¢, the edge
connecting ¢ to next(c) is removed (i.e., next(c)’s in-degree is decremented)
and if the in-degree of next(c) becomes 0, the next(c) cell is similarly processed.
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Algorithm 1 RWFlood - computes the flow direction

1: Let Q[minElev...mazElev] be an array of queues
2: for all cell ¢ in the terrain boundary do

3: cdir < NULL

4:  Qlc.elev].insert(c)

5: c.dir < OutsideT errain

6: end for

7: for z = minElev — mazxzFElev do
8:  while Q[z] is not empty do

9: ¢ < Queues|z].remove()

10: for all cell d neighbor to ¢ such that d.dir = NULL do
11: d.dir < ¢

12: if d.elev j z then

13: d.elev + z

14: end if

15: Q[d.elev].insert(d)

16: end for

17: end while

18: end for

If there are more than one cell with in-degree 0, then it is immaterial to
the final flow accumulation which cell is processed first.

3.2 Adapting RWFlood for external memory processing

As presented in [7], the RWFlood method is very efficient when the whole
terrain can be processed in internal memory. However, its performance decreases
significantly whenever the terrain does not fit in internal memory and it is
necessary to perform external processing. The main reason for this inefficiency
is the non-sequential access to the terrain matrix. According to the flooding
process, the cells are accessed (processed) following the elevation order from
the lowest to highest elevation. Also, when a cell is processed, its neighbors
need to be accessed but, although these cells are close in the two-dimensional
matrix representation, they may not be close in the memory because, usually,
a matrix is stored using a linear row-major order.

To circumvent this problem and reduce the number of disk accesses, we
propose a new method, named EMFlow, whose basic idea is to use a cache
strategy to benefit from the spatial locality of reference present in the se-
quence of accesses carried out by that algorithm. Additionally, to improve
the cache efficiency, EMFlow adopts an original strategy to subdivide the
terrain matrix in smaller pieces that can be processed separately. Also, to
compute the flow accumulation, we implemented the external memory method
Cache AwareAccumulation described in [5].

3.2.1 The flow direction

The main idea of RWFlood is to store the cells in the boundary of the flooded
regions - see Figure 2(c¢) and (d). At each step, the lowest cell in this boundary is
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processed. When a cell ¢ is processed, all neighbors of ¢ that were not processed
yet and whose elevation is smaller or equal to the elevation of ¢ are flooded,
that is, the flooding boundary moves toward these cells. This flooding process
can generate interior islands - see Figures 2(a) and (b) - and these islands can
be processed (flooded) separately since the flooding process of an island does
not affect any other island. Based on this fact, the EMFlow subdivides the
terrain into islands that are processed one by one.

More precisely, initially, the whole terrain is processed as one island that is
flooded using the RWFlood strategy. Next, at some moment (described below),
the algorithm analyzes if the flooding process generated internal islands. Notice
that an island is a group of connected cells that were not flooded (that is,
processed) yet. Thus, the islands can be identified by computing the connected
components of the cells that have not been processed yet. After the islands
have been identified, each one is processed independently.

However, this subdivision strategy does not assure that the process can
be entirely executed in internal memory. The islands can be too large and
have too many cells to fit in internal memory. Thus, to improve the algorithm
performance, the terrain matrix accesses are managed by the TiledMatriz [12]
library, which was designed to store and manage huge matrices in external
memory. TiledMatriz subdivides a matrix into blocks whose size allows that
a given number of blocks can be stored in internal memory. Then all blocks
are initially stored in external memory and each block is loaded into internal
memory on demand. That is, when a cell ¢ needs to be accessed, TiledMatriz
determines which block contains it and, if the block is not in internal memory,
loads it. When there is no longer sufficient space to store a new block, the
block data structure is managed as a cache, using the LRU - least recently used
policy to evict a block and open room for the new one.

Furthermore, to reduce the number of 1/O operations, TiledMatriz uses the
fast lossless compression algorithm LZ4 [3]. Before writing a block to disk, it is
compressed and, and after reading, it is uncompressed. As presented in [12],
this strategy can make an application requiring external memory access two
times faster.

The whole process is described by the flowchart in Figure 3.

3.2.2 The flow accumulation

In RWFlood, the flow accumulation is computed using a method based on
topological sorting. As tests showed, this method is very efficient when the
terrain can be processed in internal memory. But, as in the flow direction
computation, it does not scale very well for external memory processing since
it can require many non-sequential accesses. Therefore, in EMFlow, the flow
accumulation is computed using another, more efficient, strategy based on [5].
The main idea is to subdivide the terrain into blocks whose size is small enough
to fit into internal memory. Also, the boundary cells of each block are shared
with the neighboring blocks (except on the outer boundary of the terrain). —
see Figure 4(a). The flow accumulation is computed in three steps:
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Fig. 2 (a) Flooding the terrain; (b) The flooding process generated two islands; (c) and (d)
The cells in the flooding boundary are labeled with white.

1. Considering the flow direction matrix (that was given as input), the flow
accumulation of all cells in the boundary block is computed using conven-
tional topological sorting (each block is processed independently in internal
memory).
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Fig. 3 The flow direction and flow accumulation computation.

Also, for each block B, and for each cell ¢ in the boundary of B that flows
to an interior cell of B, we determine the boundary cell of B to where the
water from ¢ flows — see Figure 4(b).

2. Then the flow accumulation value of each boundary cell ¢ is updated adding
the corresponding values of the (same) cell ¢ in different blocks and also
adding the values of all boundary cells that flow to ¢. This last part corre-
sponds to computing the flow accumulation using only the boundary cells —
see Figure 4(c).

3. Finally, the flow accumulation of the interior cells in each block is (re)computed
using the conventional approach using the boundary cell values obtained in
the previous step.

Our tests showed that computing the flow accumulation using this strategy
rather than the external topological sort made EMFlow about 10% faster.

3.2.3 Implementation details

In the EMFlow implementation, we adopted some strategies for performance
enhancing;:

1. Islands identification: An island generated during the flooding process is
composed of a group of connected cells that have not been flooded yet
and that are surrounded by flooded cells. That is, an island is a maximal
connected component of non-flooded (or non-processed) cells. For an island
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Fig. 4 Flow accumulation steps: (a) terrain subdivision (the cells in grey are boundary cells
shared among the blocks); (b) the flow accumulation value in the boundary cells and the
corresponding flow direction for the boundary cells; (¢) updating the boundary cells flow
accumulation; (d) computing the flow accumulation in the interior cells - Source [5]

generation, it is necessary to have a group of flooded (processed) cells sur-
rounding the island. However, since the connected component computation
is a time-consuming process, especially when the terrain matrix can not be
stored in internal memory, EMFlow adopts a less accurate strategy where
the islands are identified using a lower resolution terrain.

EMFlow creates an auxiliary matrix C, where each cell corresponds to a
square block in the terrain matrix. A C cell stores the number of corre-
sponding terrain cells that have not processed yet. That is, the cells of C'
are initialized with the number of terrain cells in each corresponding square
block and, during the flooding process, this value is decremented whenever
a corresponding terrain cell is processed. The value in a C' cell becoming
zero indicates that all cells in the corresponding terrain block have already
been processed. Thus, the islands identification process is reduced to the
computation of the maximal connected component of non-zero cells in the
matrix C.

Note that if two blocks are disconnected in C', then the cells in each block
belong to different islands and can be processed separately. On the other
hand, two different islands may be identified as connected in C' (because C
has a lower resolution). That is, they may be erroneously identified as one
island. However processing those two islands as one does not change the
final result. The only effect is a potentially larger processing time because
of the increased number of cells needing to be stored in internal memory.
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2. Triggering the islands identification: The flooding process subdivision (based
on islands identification) was adopted to avoid that the queue storing the
cells to be processed (that is, the flooded boundary) grows too much and
could require a lot of memory swapping. Thus, it is not necessary to identify
all the islands that are generated along the flooding process (in fact, most
of time, the islands generated are very small and can be easily processed si-
multaneously). Therefore, the island identification (the subdivision process)
should be triggered when there are good chances to obtain large islands
(that is, islands having long boundaries) which could offset the process cost.
So, EMFlow uses the length of the flooded region boundary to trigger the
islands identification process and it is executed when the number of cells in
this n boundary hits a given threshold.

3. Scheduling the island processing: As described previously, during the terrain
flooding, island generation follows a recursive sequence. However these
islands can be processed in any order since they are independent and their
processing is self-contained. Thus, EMFlow schedules the island process-
ing to try to process first those islands that might require fewer external
memory accesses. Since the cells in the island boundaries are already stored
internally, external memory accesses will be required only if there exist some
cells adjacent to the island’s boundary that are not in internal memory yet.
Then, for each island, EMFlow computes the percentage of cells adjacent
to the island boundary that are already in internal memory. The islands
with a higher percentage are processed first. In fact, since the matrix cell’s
accesses are managed by TiledMatriz using blocks, EMFlow computes the
percentage of blocks containing cells adjacent to the boundary that are
already in internal memory.

4. The island boundary sizes: When an island is processed, all cells on its
boundary need to be loaded into internal memory During the cell processing,
the neighbor cell must also be loaded. Thus, if EMFlow tries to process
simultaneously many islands having long boundaries, they might not all fit
in internal memory. In this case, some blocks of cells need to be evicted and
reloaded later. To avoid this time-consuming operation, FMFlow defines a
threshold to limit the number of islands processed at the same time.

3.3 EMFlow versus r.watershed.seg

Both EMFlow and r.watershed.seg (included in GRASS) try to improve their
performance by using libraries to manage the external memory accesses. FM-
Flow uses TiledMatriz [12] and r.watershed.seg uses segment. Although these
two libraries have similar goals, and both are based on subdividing the matrix
into blocks managed using a cache strategy, they have the following important
differences:
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1.

Both libraries store a set of blocks in internal memory using an array.
However, when a cell is accessed, they use different methods to check if the
block containing that cell is already in internal memory. In segment, the
blocks’ positions are kept in a list of pairs (by,,b,) where b,, is the block
number (in the terrain matrix) and b, is the block position in the internal
memory array. Then, to check if the block is loaded in internal memory (and
get it), segment searches the list. In the worst case, locating a cell can take
O(n) time, where n is the number of blocks stored in internal memory. To
reduce this time, segment keeps the last block accessed in front of the list,
to avoid the worst case of immediately searching for the same cell again.
In contrast, TiledMatrix takes constant time to access a cell, since the
blocks’ positions are stored in a matrix of size % X % where N and M
are respectively the terrain matrix height and width, and h and w are
respectively the block height and width. When a block is not in internal
memory, the corresponding entry is set to —1. Otherwise, it is set to the
array position where that block is stored. As this operation is executed
many times, its efficiency directly affects the algorithm performance.

The block replacement policy is LRU in both libraries, but the libraries use
different strategies for block marking. In segment, the blocks are marked
with an integer value that is updated every time any block is accessed.
Initially, all blocks are marked with zero. When a new block b is accessed
(that is, when a cell contained in a new block b is accessed), the values for
all blocks, except b, are incremented. The block replacement will evict the
block with the largest value.

In TiledMatriz, a block is marked using a timestamp everytime it is accessed.
Then, the block with the smallest timestamp will be evicted.

Therefore, block marking takes O(n) time in segment and a constant time
in TiledMatrix.

To reduce the number of I/O operations, TiledMatriz uses the fast loss-
less compression algorithm LZ4 [3]. Before writing a block to disk, it is
compressed using LZ4 and, after reading from disk, it is uncompressed.
As presented in [12], the EMFlow is more than twice as fast when this
compression strategy is used. In contrast, segment does not use any similar
strategy.

4 Experimental Results

EMFlow was implemented in C++ and compiled with g++ 4.5.2. It was
compared against the most efficient algorithms described in the literature:
TerraFlow and r.watershed.seg, both available in GRASS. The tests were
executed on an Intel Core 2 Duo machine with 2.8GHz and 5400 RPM SATA
HD (Samsung HD103SI) running Ubuntu Linux 11.04 (64 bits). This machine
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Fig. 5 SRTM USA Regions.

Table 1 Processing time (in seconds) for different terrain sizes from regions R2 and R3 with
1GB of memory.

Processing times (sec.)
Terrain Region R2 Region R3
Size EMFlow  TerraFlow r.wat.seq | EMFlow  TerraFlow r.wat.seg
10002 0,93 24,43 6,25 0,92 28,22 5,91
50002 18,80 661,37 622,66 19,11 907,50 508,90
100002 81,67 2329,71  25784,71 81,09 3358,42 55182,80
150002 288,14 7588,33 ) 303,39 9046,13 )
200002 542,84 12937,30 00 566,38 14 404,76 00
250002 971,14 22220,89 ) 996,78 24974,77 )
300002 1501,61 35408,11 00 1811,35 41251,21 00
400002 3045,39 67076,04 00 3824,65 78 056,28 00
500002 5875,84 98 221,64 ) 6244,78  110394,74 )

was configured with different internal memory sizes, 1GB and 2GB, to evaluate
the algorithm’s performance in different scenarios.

The tests used different datasets generated from two distinct USA regions
(regions 02 and 03 in Figure 5) sampled at 30m horizontal resolution using 2
bytes per elevation. These two regions were selected because they are in the
central part of the USA, do not include ocean, and therefore have few NODATA
elements.

Tables 1 and 2 show the execution times (in seconds) of the three algorithms
on the R2 and R3 regions using both 1GB and 2GB of RAM. In these tests,
the TiledMatriz library, used by EMFlow, was configured to use block with
200 x 200 cells (in Section 4.1 we present some reasons to use this block
size). In the tables, the symbol oo is used to indicate that the execution was
interrupted after 150000 seconds (40 hours). Figures 6 and 7 present the charts
corresponding to the tables.

Note that EMFlow was always faster than the other two algorithms. On
average, it was 27 times faster and, for very huge terrains (such as 40000 x 40000),
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Table 2 Processing time (in seconds) for different terrain sizes from regions R2 and R3 with
2GB of memory.

Processing times (sec.)
Terrain Region R2 Region R3
Size EMFlow  TerraFlow r.wat.seg | EMFlow  TerraFlow  r.wat.seg
10002 0,74 19,32 6,03 0,98 19,44 5,79
50002 20,02 400,84 630,60 19,98 44297 513,88
100002 87,66 2251,66 5290,46 86,94 2552,93 3911,23
150002 242,02 5870,34 34252,23 233,36 6 869,33 32518,89
200002 443,58 13 066,63 00 413,37 13873,60 00
250002 713,98 19339,79 ) 686,86 2249214 o0
300002 1113,31 30 364,31 o0 1094,58 33337,07 9]
400002 2126,80 56421,36 ) 1943,17 59149,27 [eS)
50 0002 3315,72 82673,22 ) 2996,99 86 670,30 [e%S)
100000 T T
r.watershed.seg —-E-—
90000 ~ : TerraFlow —&—
= 80000 EMFlow —w—
e
§ 70000
]
2 60000
[}
£ 50000
2 40000
¢ 30000
o
& 20000
10000
0 ~ v >— t Y I
0 0.5 1 1.5 2 2.5
Number of cells * 109
(a)
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__ 100000 |- EMFlow —w— : |
£
g 80000 .
v
£ 60000 |
2
# 40000 .
&
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0 —v—t : = L

0 0.5 1 1.5 2 2.5

Number of cells * 10°
(b)

Fig. 6 Comparison of Execution Times for 1GB Internal Memory in the regions R2 (a) and
R3 (b).
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Fig. 7 Comparison of Execution Times for 2GB Internal Memory in the regions R2 (a) and
R3 (b).

EMFlow was more than 30 times faster than TerraFlow, while r.watershed.seg
was still running after 40 hours.

Since EMFlow is based on RWFlood, the drainage networks computed by
these two algorithms are the same. Additionally, as presented in [7], the drainage
networks obtained by RWFlood are very similar to those computed by TerraFlow
and r.watershed. For example, Figure 8 presents the drainage networks computed
by the three methods: EMFlow, TerraFlow and r.watershed.seg for two terrains:
the R3 region and a terrain from the Tapajos® region. Figures 8 (a) and
(b) show the networks computed by EMFlow in the regions R3 and Tapajos
respectively, the Figures 8 (¢) and (d) show the networks from R3 and Tapajos
computed by TerraFlow and Figures 8 (e) and (f) show the networks computed

I Tapajos is an important tributary river of the Amazon basin.
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by r.watershed in those regions. As we can see, the corresponding networks are
very similar. The differences are due to how the algorithms break ties in flat
areas and in cells having two (or more) lowest neighbors.

4.1 The block size definition

As the experimental tests showed, the EMFlow is very efficient but, its per-
formance depends, mainly, on how the TiledMatriz library is configured, that
is, it depends on the block size used in TiledMatrixz. The question is: how to
determine the best block size? As stated in [12], this value relies upon many
factors such as, the memory size available, the number of blocks that should
be kept in the memory, the matrix access pattern, etc. Some of these factors
can be defined previously, but others are related to the application and are
hard to predict. For example, in drainage network computation, there is no
predefined matrix access pattern and also it is not possible to determine the
number of blocks that needs to be kept in the memory because these values are
directly affected by some terrain features. To illustrate how the “best” block
size can vary, see the Table 3 showing the EMFlow processing time in different
terrains (regions and sizes) using different memory sizes and block sizes. For
each instance, the best value (fastest processing time) achieved is underlined.

A similar analysis was conducted by GRASS developers? concluding that
it is not possible to define a segment size that would be the “best” in all
situations. Thus, they decided to use a fixed block size with 256 x 256 cells
arguing that this size keeps the application data aligned with the size of the
disk data transference.

We also adopted a similar strategy using a constant block size, but since
in EMFlow the block size to be transferred to/from the disk is not fixed (the
blocks are compressed resulting in different sizes) we defined the block size
based on the evaluation presented by Vitter [16] that suggested to use blocks
“on order of 100KB”. Thus, considering the average compression ratio achieved
in TiledMatriz (reported in [12]) and the memory size required by EMFlow for
each terrain cell we decided to use blocks with 200 x 200 cells.

This block size does not always produce the best performance (as for Region
R3 using 1GB of RAM) but, on the other hand, it also is not the worst ever.
In average, using this block size, the EMFlow performance is about 20% worse
than the best one.

However, even without using the best block size, EMFlow was much faster
than the other methods (TerraFlow and r.watershed).

5 Conclusion

This paper presented EMFlow, a new algorithm for drainage network com-
putation on huge terrains stored in external memory. EMFlow uses a cache

2 See http://osdir.com/ml/grass-development-gis/2009-02/msg00133.html
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Fig. 8 Drainage networks of two terrains R3, in (a), (c) and (e), and Tapajos, in (b), (d)
and (f), computed by three methods: (a) and (b) EMFlow, (c¢) and (d) TerraFlow, (e) and
(f) r.watershed.seg.
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Table 3 Processing time (in seconds) in different terrains regions (R2, R3 and Tapajos)
and sizes (300002, 400002 and 500002 cells) using different block sizes (1002, 2002, 3002, - - -,
10002 cells) for 1GB, 2GB and 3GB of memory size. The fastest processing time (for each
instance) is underlined and co means the process was stopped after running 30000 seconds.

Terrain size

300007 400007 5000072

Block size R2 R3 Tpj R2 R3 Tpj R2 R3 Tpj
1002 2627 2864 5115 5013 7814 7958
2002 1702 1979 3118 4427 4697 6529
m 3002 1420 2305 2686 11086 4332 15493
U 4002 1699 4507 3271 23990 4541 00
= 5002 2876 8941 5071 oo 7603 0o
6002 5415 15170 9735 00 15099 00
7002 11334 24978 27854 S 00 00
1002 2105 2464 4511 4303 7188 6465
2002 1420 1499 2800 2669 4527 4201
3002 1344 1366 2492 2355 3880 3644
4002 1306 1306 2388 2260 3694 3595
gg 5002 1317 1301 2353 2215 3648 3484
5 6002 1317 1251 2330 2328 3570 3450
7002 1257 1198 2218 2440 3396 3630
8002 1310 1254 2256 2143 3453 3706
9002 1261 1231 2246 2276 3381 3475
10002 1288 1231 2284 2239 3515 3661
1002 1739 1683 3929 4035 7108 6169
2002 1432 1357 2713 2557 4437 4127
3002 1243 1185 2360 2166 3682 3534
4002 1204 1216 2295 2117 3566 3285
8 5002 1241 1160 2225 2102 3424 3211
- 6002 1282 1206 2262 2124 3335 3183
7002 1227 1165 2097 2014 3249 3043
8002 1254 1201 2204 2021 3453 3125
9002 1230 1186 2186 2076 3381 3370
10002 1230 1188 2174 1989 3515 3335

strategy to improve the external memory access and uses a new strategy for
terrain subdivision that is based on island generation during the flooding.

EMFlow’s performance was compared against the most efficient methods
described in the literature: TerraFlow and r.watershed.seg using many different
terrains sizes and, in all situations, EMFlow was much faster (in some cases,
more than 30 times) than either.
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