
Computing the drainage network on huge grid terrains

Thiago L. Gomes
Universidade Fed. de Viçosa

Viçosa, MG, Brazil
thiago.luange@ufv.br

Salles V. G. Magalhães
Universidade Fed. de Viçosa

Viçosa, MG, Brazil
salles@ufv.br

Marcus V. A. Andrade
Universidade Fed. de Viçosa

Viçosa, MG, Brazil
marcus@ufv.br

W. Randolph Franklin
Rensselaer Polytechnic Inst.

Troy, NY, USA
mail@wrfranklin.org

Guilherme C. Pena
Universidade Fed. de Viçosa

Viçosa, MG, Brazil
guilherme.pena@ufv.br

ABSTRACT
We present a very efficient algorithm, named EMFlow , and its
implementation to compute the drainage network, that is, the
flow direction and flow accumulation on huge terrains stored
in external memory. It is about 20 times faster than the two
most recent and most efficient published methods: TerraFlow
and r.watershed.seg. Since processing large datasets can take
hours, this improvement is very significant.

The EMFlow is based on our previous method RWFlood
which uses a flooding process to compute the drainage net-
work. And, to reduce the total number of I/O operations,
EMFlow is based on grouping the terrain cells into blocks
which are stored in a special data structure managed as a
cache memory. Also, a new strategy is adopted to subdivide
the terrains in islands which are processed separately.

Because of the recent increase in the volume of high reso-
lution terrestrial data, the internal memory algorithms do
not run well on most computers and, thus, optimizing the
massive data processing algorithm simultaneously for data
movement and computation has been a challenge for GIS.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Geo-
metrical problems and computations

General Terms
Algorithms, Experimentation, Performance

Keywords
Terrain modeling, GIS, External memory processing, Hydrol-
ogy

1. INTRODUTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGSPATIAL GIS ’12, November 6-9, 2012. Redondo Beach, CA,
USA Copyright (c) 2012 ACM ISBN 978-1-4503-1691-0/12/11...$15.00.

Many important applications in Geographical Information
Science (GIS) as hydrology, visibility, routing, etc require
terrain data processing and these applications have become a
challenge for GIS because they have to process a huge volume
of high resolution terrestrial data. On most computers, the
internal memory algorithms do not run well for such volume of
data since a large number of I/O operations is necessary. For
example, NASA’s Shuttle Radar Topography Mission (SRTM)
acquired 30 meters resolution terrain data for much of the
world, generating about 10 terabytes of data. The datasets
can be even bigger considering the technological advances
which allow data acquisition at sub-meter resolution.

Thus, it is important to optimize the massive data pro-
cessing algorithms simultaneously for computation and data
movement between external and internal memory since pro-
cessing data in external memory takes much more time. That
is, the algorithms for external memory processing must be
designed and implemented to minimize the number of “I/O”
operations for swapping data between main memory and
disk.

More precisely, the algorithms for external memory pro-
cessing should be designed and analyzed considering a compu-
tational model where the algorithm complexity is evaluated
based on data transfer operations instead of CPU process-
ing operations. A model often used, proposed by Aggarwal
and Vitter [1], defines an I/O operation as the transfer of
one disk block of size B between the external and internal
memory; the performance is measured by number of such
I/O operations. The internal computation time is assumed
to be comparatively insignificant. The algorithm complexity
is defined based on the number of I/O operations executed
by fundamental operations such as scanning or sorting n
contiguous elements stored in external memory. Those are

scan(n) = θ(n/B) and sort(n) = θ
(

n
B

logM/B
n
B

)
, where M

is the internal memory size.
Hydrological applications generally require the drainage

network computation of a terrain, consisting of the flow direc-
tion and flow accumulation. Intuitively, they are the path that
water flows through the terrain and the amount of water that
flows into each terrain cell supposing that each cell receives a
rain drop [12]. As broadly described [2, 4, 10,11], it is a very
time-consuming process, mainly on huge terrains requiring
external memory processing. Indeed, in many situations, the
flow direction can not be straightforwardly determined as for
example, in a local minimum terrain cell.

In this paper, we present a new method, named EMFlow ,
for computing the drainage network on huge terrains repre-
sented by a digital elevation matrix stored in external memory.
This new method is based on the adaptation of the RWFlood
algorithm [10] where the idea is to use a cache strategy to
benefit from the spatial locality of reference present in the
sequence of accesses to the terrain matrix executed by that
algorithm. Additionally, to improve the cache efficiency, EM-
Flow adopts a new (original) strategy to subdivide the terrain
matrix into smaller pieces (islands) that can be processed
separately.

The performance of EMFlow was compared against
the most recent and efficient methods TerraFlow [5] and
r.watershed.seg [6], both included in the open source GIS
GRASS [8]. As the tests showed, the EMFlow can be more
than 20 times faster than the fastest of them. Since pro-
cessing of large terrains can take hours, this is a significant
improvement.

2. BACKGROUND AND PREVIOUS
WORK

2.1 Drainage Network Computation
As described previously, the drainage network of a terrain

delineates the path that water flows through the terrain (the
flow direction) and the amount of water that flows into each
terrain cell (the flow accumulation). As formulated by Arge
et al. [2], the flow direction problem is to assign the flow
directions to all cells in the terrain such that the following
three conditions are fulfilled:

1. Every cell has at least one flow direction;

2. No cyclic flow paths exist; and

3. Every cell in the terrain has a flow path to the edge of
the terrain.

The flow direction can be modeled considering single flow
direction (SFD) or multiple flow directions (MFD). In SFD,
for each terrain cell it is assigned a direction towards the
steepest downslope neighbor, while in MFD, each cell has
directions to all downslope neighbors. The use of SFD or
MFD is essentially a modeling choice since the computational
complexity of the flow routing problem is the same in both
models. This paper will use SFD.

There are several methods to obtain the drainage net-
work [2,4,9,11,19]. As described by those authors, the major
challenge in the process is the flow routing in local minimum
and flat areas. A local minimum is a cell with no downslope
neighbor and a flat area is a set of adjacent cells with a same
elevation. Given a cell c, a neighbor cell is called a downslope
neighbor if it has a strictly lower elevation than c and a
cell in a flat area that has a downslope neighbor is called a
spill-point. Also, the flat areas can be classified as a plateau
or a sink where the plateau has, at least, a spill point and a
sink doesn’t. Intuitively, water will accumulate in a sink until
it fills up and water flows out of it [9] and in the plateau the
water should flow towards spill points.

Usually, most drainage network computation methods, as
for example [2, 4, 11,18], use a preprocessing step to remove
the sinks and the flat areas. Initially, the elevation of the
cells belonging to a sink are increased to transform it into a
plateau. Next, the directions on the plateau are assigned to

ensure that there is a path (along flow directions) from each
cell to the nearest spill point.

After obtaining the flow direction, the next step is to com-
pute the flow accumulation in each terrain cell, that is, the
amount of water flowing to each cell supposing that all cells
receive a drop of water and this water follows the direc-
tion obtained in the previous step. Several methods for flow
accumulation computation are based on graph topological
sorting [2, 15,18] while others [13,14] model this problem as
a linear equations system.

According to Planchon et al. [16], the drainage network
computation requires a considerable amount of processing,
mainly due the preprocessing step to remove depressions and
flat areas. In fact, in most methods based on this strategy,
more than 50% of the total processing time is spent by this
step. To avoid this time-consuming step, recently Magalhães
et al. [10] proposed a new method, named RWFlood, which is
shortly described in section 3.1. As shown in [10], this method
is more than 100 times faster than other recent methods but
it does not scale well when the terrain does not fit in internal
memory.

2.2 Computing Drainage Network Algo-
rithms in External Memory

Several GIS implement algorithms for flow direction and
flow accumulation but most of these algorithms were designed
assuming that the terrain can be stored in internal memory
and therefore they often do not scale well to large datasets [2].
On the other hand, there are some methods recently devel-
oped to process huge volume of data in external memory
such as TerraFlow [5] and r.watershed.seg [6] both available
in GRASS GIS.

2.2.1 TerraFlow
The TerraFlow is an efficient method, proposed by Arge

et al. [2, 20], to compute hydrological elements as drainage
network and watershed in large terrains stored in external
memory. It was implemented based on the model proposed by
Aggarwal and Vitter [1]. For performance improvements, it
uses some specific methods for data management, replacement
and movement between internal and external memory.

The flow direction is computed in several steps. Initially,
the plateaus and sinks are identified and the flow directions
on non-flat areas are determined. Next, the flow directions on
plateaus are assigned and then the depressions are identified
and filled (removed). Finally, the flow directions on these
areas are determined.

The flow accumulation is computed taking the elevation
grid and the flow direction grid as input. Then, assuming
that each cell receives a unit of water which flows according
to the flow direction, the cells are processed using a strategy
called time forward processing which uses a priority queue to
process the cells in a topological order.

As described by the authors, the TerraFlow complexity is
Θ(sort(n)) and it uses some temporarily files whose total
size may be up 80 times larger than the original terrain file.

2.2.2 GRASS module r.watershed
The r.watershed is another GRASS module to obtain the

drainage network. It was initially developed for internal mem-
ory processing and adapted for external memory [11] using
the GRASS segment library [7], which allows an efficient
processing of huge matrices in external memory.

The segment library provides a set of functions to man-
age huge matrices stored in external memory. Basically, the
matrix is subdivided into segments (blocks) that are stored
in temporary disk files. To improve the efficiency, a given
number of these segments are kept in internal memory. Thus,
to access a given matrix position, firstly, it is determined
which segment contains that position and, then, the list of
segments stored in internal memory is swept to check if the
corresponding segment is already loaded. If yes, the position
is accessed as usual, otherwise, the corresponding segment
need to be transferred to internal memory. To avoid the seg-
ment list sweeping at each matrix access, the last accessed
segment is kept in the first position of the list and, thus,
consecutive accesses in a same segment are more efficient.

When loading a segment in memory, there may be no
space available to store the new segment and, in this case,
the segment having the longest time without being accessed
is evicted to open space for the new segment. In the segment
library implementation, the segments have a “access time”
field represented by an integer and every time a new segment
is accessed (that is, a segment that is not in the front of the
list) its access time is set to zero and the access time of all
other segments are incremented by 1. Thus, in some cases,
the segment access can have a large CPU overhead.

3. THE EMFlow METHOD
As described in section 2.1, most methods for flow direction

computation use a very time-consuming preprocessing step
to remove depressions and flat areas. However, in [10] we
presented a new method, named RWFlood, which is much
more efficient than other classical methods, mainly because it
does not perform this preprocessing step and the depressions
and flat areas are naturally handled during the processing.
Thus, as mentioned in Section 1, the purpose of this work is to
adapt the RWFlood method for external memory processing.

3.1 RWFlood method
To avoid the time-consuming preprocessing step, RWFlood

computes the drainage network using a reverse order. Instead
of determining the downhill flow it uses a flooding process.
More precisely, the method is based on the following obser-
vation: if a terrain is flooded by water coming from outside
and getting into the terrain through its boundary then the
course of the water getting into the terrain will be the same
as the water coming from rain and flowing downhill (that is,
the flow direction). Thus, the idea is to suppose the terrain is
surrounded by water (as an island) and to simulate a flooding
process raising the water level iteratively. When the water
level raises, it gradually floods the terrain cells and when it
reaches a depression, that depression is filled by “water”.

Figure 1 illustrates the flooding process: in Figure 1(a) the
whole terrain is an island and next, in 1(b), the water level
achieves the lowest cell in the terrain boundary. The raising
water process continues and in 1(c) the water starts to get
into the terrain and a terrain depression is filled — see 1(d).
The flooding process can generates new islands as in 1(e).
Finally, the process ends when the whole terrain is flooded —
see 1(f).

More formally, in the beginning, the water level is set to
the elevation of the lowest cell in the terrain boundary. Then,
two steps are executed iteratively: flooding a cell and raising
the water level. When flooding a cell c, all cells neighbors
to c are processed as following: given a neighbor cell d, if

Algorithm 1 RWFlood - computes the flow direction

1: Let Q[minElev...maxElev] be an array of queues
2: for all cell c in the terrain boundary do
3: c.dir ← NULL
4: Q[c.elev].insert(c)
5: c.dir ← OutsideTerrain
6: end for
7: for z = minElev → maxElev do
8: while Q[z] is not empty do
9: c← Queues[z].remove()

10: for all cell d neighbor to c such that d.dir = NULL
do

11: d.dir ← c
12: if d.elev < z then
13: d.elev ← z
14: end if
15: Q[d.elev].insert(d)
16: end for
17: end while
18: end for

the elevation of d is smaller than the elevation of c, then the
elevation of d is raised to the elevation of c; also, the flow
direction of d is set to the cell c.

After flooding all cells with the same elevation as c, the
next step is executed, that is, the water level is raised to the
elevation of the lowest cell higher than c and the process
continues from this cell. To get this cell quickly, the method
uses an array Q of queues to store the cells that need to be
processed later. Thus,Q contains one queue for each elevation

— queue Q[m] will store the cells with elevation m that were
already visited and need to be processed later. Initially, each
cell in the terrain boundary is inserted into the corresponding
queue. Supposing the lowest cells have elevation k, the process
starts at queue Q[k] and, after processing all cells in that
queue, the process proceeds with the next non-empty queue
in the array Q (intuitively, meaning that the water level is
raised). Let Q[z] be this next non-empty queue, then the
front cell is dequeued (conceptually, it is flooded) and its
neighbors are visited. That is, given a neighbor cell v, if v
has already been visited, it is done; on the other hand, if v
has not been visited yet, and if its elevation is not lower than
z, it is inserted in its corresponding queue; otherwise, if its
elevation is lower than z, its elevation is set to z and the cell
is inserted into Q[z]. This latter case corresponds to flooding
a depression point.

Thus, the next cell to be processed can be easily obtained
by getting the next cell in the current queue (if it is not
empty) or the first cell in the next non-empty queue. See
algorithm 1.

The flow direction of each cell can be determined during
the flooding process since, when a cell c is processed, all
cells adjacent to c which are inserted in a queue can have
their flow direction set to c. That is, conceptually, the flow
direction is set to the opposite direction as the water gets
into the cells and, thus, the water in the adjacent cells will
flow to the cell c. Initially, the flow direction of all cells in the
terrain boundary is set to out of the terrain (i.e., indicating
that in those cells the water flows out of the terrain).

After computing the flow direction, RWFlood uses an al-
gorithm based on graph topological sorting to compute the
flow accumulation. Conceptually, the idea is to process the

(a) (b) (c)

(d) (e) (f)

Figure 1: The flooding process: (a) the whole terrain is an island; (b) the water level is on the lowest cell in
the terrain boundary; (c) the water level is raised; (d) a depression is flooded; (e) the flooding process creates
two islands; (f) the flooding process is complete.

flow network as a graph where each terrain cell is a vertex
and there is a directed edge connecting a cell c1 to a cell c2
if and only if c1 flows to c2. Initially, all vertices in the graph
have 1 unit of flow. Then, in each step, a cell c with in-degree
0 is set as visited and its flow is added to the next(c)’s flow
where next(c) is the cell following c in the graph. After pro-
cessing c, the edge connecting c to next(c) is removed (i.e.,
next(c)’s in-degree is decremented) and if the in-degree of
next(c) becomes 0, the next(c) cell is similarly processed.

3.2 Adapting RWFlood for external memory
processing

As presented in [10], the RWFlood method is very efficient
when the whole terrain can be processed in internal memory.
However, its performance decreases significantly whenever
the terrain does not fit in internal memory and it is neces-
sary to perform external processing. The main reason for
this inefficiency is the non-sequential access to the terrain
matrix. Indeed, according to the flooding process, the cells
are accessed (processed) following the elevation order from
the lowest to highest elevation. Also, when a cell is processed,
its neighbors need to be accessed but, although these cells
are close in the two-dimensional matrix representation, they
may not be close in the memory because, usually, a matrix
is stored using a linear row-major order.

To circumvent this problem and reduce the number of
disk accesses, we propose a new method, named EMFlow ,
whose basic idea is to use a cache strategy to benefit from the
spatial locality of reference present in the sequence of accesses
carried out by that algorithm. Additionally, to improve the
cache efficiency, EMFlow adopts a new (original) strategy to
subdivide the terrain matrix in smaller pieces which can be

processed separately.
Conceptually, the main idea of RWFlood is to store the

cells in the boundary of the flooded regions — see Figure 2(c)
and (d). At each step, the lowest cell in this boundary is
processed. When a cell c is processed, all neighbors of c that
were not processed yet and whose elevation is smaller or
equal to the elevation of c are flooded, that is, the flooding
boundary moves toward these cells. This flooding process can
generate interior islands — see Figures 2(a) and (b) — and
these islands can be processed (flooded) separately since the
flooding process of an island does not affect any other island.
Based on this fact, the EMFlow subdivides the terrain into
islands that are processed one by one.

More precisely, initially, the whole terrain is processed as
one island which is flooded using the RWFlood strategy. Next,
at some moment (described below), the algorithm analyzes
if the flooding process generated internal islands. Notice
that, an island is a group of connected cells which were not
flooded (that is, processed) yet. Thus, the islands can be
identified computing the connected components composed of
non processed cells. After identifying the islands, each one is
processed independently.

However, this subdivision strategy does not assure that
the process can be entirely executed in internal memory. The
islands can be too large and have too many cells that do
not fit in internal memory. Thus, to improve the algorithm
performance, the terrain matrix accesses are managed by
the TiledMatrix [17] library which was designed to store
and manage huge matrices in external memory. Basically,
in TiledMatrix, a matrix is subdivided in blocks whose size
allows that a given number of blocks can be stored in internal
memory. Then, all blocks are stored in external memory and

(a) (b)

(c) (d)

Figure 2: (a) Flooding the terrain; (b) The flooding process generated two islands; (c) and (d) The cells in
the flooding boundary are labeled with ×.

they are loaded to internal memory on demand. That is,
when a cell c needs to be accessed, the library determines
which block contains that cell and, if the block is not in the
internal memory, it is loaded. Since eventually there may
not be space to store a new block, the data structure storing
the blocks is managed as a cache memory. More precisely,
the library adopts a replacement policy to evict a block and
open room for the new block1. EMFlow uses the LRU - least
recently used policy.

Furthermore, to reduce the number of I/O operations, Tiled-
Matrix uses the fast lossless compression algorithm LZ4 [3].
Before storing a block in the disk, it is compressed and when
a block is loaded to internal memory it is uncompressed.

3.2.1 Implementation details
In the EMFlow implementation, we adopted some strate-

gies for performance improvement:
(1) Islands identification: an island generated during the
flooding process is composed of a group of connected cells
that were not flooded yet, and this group is surrounded by
flooded cells. That is, an island is a maximal connected com-
ponent of non-flooded (or non-processed) cells and, to have an
island, it is necessary to have a group of flooded (processed)
cells surrounding the island. But, since the connected compo-
nent computation is a time-consuming process, mainly when
the terrain matrix can not be stored in internal memory, the
algorithm adopts a less accurate strategy where the islands
are identified using a lower resolution terrain. More precisely,
the algorithm creates an auxiliary matrix C where each cell
corresponds to a square block in the terrain matrix and a C
cell stores the number of corresponding terrain cells which

1
The library provides the following policies: LFU - Least Frequently

Used, FIFO - first in first out, and random selection.

were not processed yet. That is, the cells of C are initial-
ized with the number of terrain cells in each corresponding
square block and, during the flooding process, this value is
decremented whenever a corresponding terrain cells is pro-
cessed. When the value in a C cell becomes zero it indicates
that all cells in the corresponding terrain block were already
processed. Thus, the islands identification process is reduced
to the computation of the maximal connected component of
non zero cells in the matrix C.

Notice that if two blocks are disconnected in C then the
cells in each block will belong to different islands and, thus,
they can be processed separately. On the other hand, two
different islands in the terrain may be identified as connected
in C (because C has a lower resolution), that is, they may be
identified as one island. But, the final result does not change
if two islands are processed as one island. This may only lead
to a larger processing time because the number of cells which
need to be stored in internal memory may increase.

Since the islands identification is not a trivial process, it
is executed only occasionally. The idea is to execute it when
there are evidences that some islands were generated. In the
EMFlow algorithm, the lenght of the flooded region boundary
was used to trigger this process, that is, it is executed when
the number of cells in the flooded region boundary achieves
a given threshold.
(2) Scheduling the islands processing : as described previously,
during the terrain flooding, the island generation follows a
recursive sequence, but these islands can be processed in any
order since they are independent and their processing is self-
contained. Thus, in EMFlow , the processing of the islands is
scheduled trying to process first those islands that (probably)
will require a smaller number of external memory accesses.
Since the cells in the islands boundary are already stored in

internal memory then the external memory accesses will be
required only if there exist some cells adjacent to the islands
boundary that are not in internal memory yet. Then, the
algorithm computes, for each island, the percentage of cells
adjacent to the island boundary that are already in internal
memory and the islands with higher percentage are processed
first. In fact, since the matrix cells accesses are managed by
the TiledMatrix library using blocks, the algorithm computes
the percentage of blocks containing cells adjacent to the
boundary that are already in internal memory.
(3) The islands boundary size: when an island is processed,
all cells on its boundary need to be loaded into internal
memory and also, during the cell processing, the neighbor
cells must be loaded too. Thus, if the algorithm tries to
process many islands simultaneously and if these islands
have long boundaries (with too many cells), this large number
of cells may not fit in internal memory. In this case, some
cells (in fact, some blocks) need to be evicted and reloaded
again later. To avoid these time-consuming operations, the
algorithm defines a threshold to limit the number of islands
that could be processed at a same time, that is, which could
be loaded in internal memory.

3.3 EMFlow versus r.watershed.seg
Both methods EMFlow and r.watershed.seg (included in

GRASS) try to improve their performance by using libraries
to manage the external memory accesses; EMFlow uses the
TiledMatrix library [17] and r.watershed.seg uses segment [7].
Although these two libraries have similar purposes and both
are based on to subdivide the matrix in blocks and man-
age them using a cache strategy, they have some important
differences described below:

• Both libraries store a set of blocks in internal memory
using an array. However, when a terrain cell is accessed,
they use different methods to check if the block contain-
ing that cell is already loaded in internal memory. In
the segment, the array positions where the blocks are
stored are kept in a list of pairs (bn, bp) where bn is the
block number (referent to the terrain matrix) and bp is
the block position in the internal memory array. Then,
to check if the block is loaded in internal memory (and
get it), the list is searched. Thus, in the worst case, the
access to a terrain cell can take O(n) time, where n is
the number of blocks stored in internal memory. Trying
to reduce this time, the library keeps the last block
accessed in the front of the list to avoid the worst case
of searching operation when the next accessed cell is
also in the same block. On the other hand, in TiledMa-
trix, the terrain cell access always takes a constant time
since the blocks’ positions are stored in a matrix of size
N
h
× M

w
where N and M are respectively the terrain ma-

trix height and width and h and w are respectively the
block height and width. Thus, if a block is not loaded in
internal memory, the matrix position corresponding to
that block is set to −1, otherwise, it is set to the array
position where that block is stored. As this operation
is executed many times during the whole process, its
efficiency affects directly the algorithm performance.

• The block replacement policy is LRU in both libraries,
but the libraries use different strategies for block mark-
ing. In segment, the blocks are marked with an integer
value which is updated every time a block is accessed.

Figure 3: SRTM USA Regions.

Initially, all blocks are marked with zero and when a
new block b is accessed (that is, when a cell contained in
a new block b is accessed), the value of all blocks, except
b, are incremented. Thus, the block replacement will
evict the block with the smaller value. In TiledMatrix,
the blocks are marked using a timestamp, that is, when
a block is accessed, it is marked with the current times-
tamp. Then, the block with the smaller timestamp will
be evicted. Therefore, the block marking takes O(n)
time in segment and a constant time in TiledMatrix.

• To reduce the number of I/O operations, TiledMatrix
uses the fast lossless compression algorithm LZ4 [3].
Thus, before writing a block to the disk, it is compressed
using LZ4 and, after reading a block from the disk, it
is uncompressed. As presented in [17], the EMFlow
is more than two time faster when this compression
strategy is used. On the other hand, the segment does
not adopt any similar strategy.

4. EXPERIMENTAL RESULTS
EMFlow was implemented in C++ and compiled with

g++ 4.5.2. It was compared against the most efficient al-
gorithms described in the literature: TerraFlow [5] and
r.watershed.seg [6] both available in GRASS. The tests were
executed in a machine with an Intel Core 2 Duo with 2,8GHz
and 5400 RPM SATA HD (Samsung HD103SI) running the
Ubuntu Linux 11.04 64 bits operation system. This machine
was configured with different internal memory sizes: 1GB
and 2GB to evaluate the algorithms performance in different
scenarios.

The tests used different datasets generated from two dis-
tinct USA regions (regions 02 and 03 in Figure 3) sampled at
30m horizontal resolution using 2 bytes per elevation value.
These two regions were selected because they are in the cen-
tral part of USA, do not include ocean, and therefore have
few NODATA elements.

Tables 1 and 2 show the execution time (in seconds) of the
three algorithms in the R2 and R3 regions using respectively
1GB and 2GB of RAM. In these tests, the TiledMatrix library,
used by EMFlow , was configured as following: for 1GB of
RAM it was used blocks with 200× 200 cells and for 2GB
the block size was 400× 400 cells. In the tables, the symbol
∞ is used to indicate that the execution was interrupted

Processing times (sec.)
Terrain Region R2 Region R3

Size EMFlow TerraFlow r.wat.seg EMFlow TerraFlow r.wat.seg

10002 0,93 24,43 6,25 0,92 28,22 5,91
50002 18,80 661,37 622,66 19,11 907,50 508,90
100002 81,67 2329,71 25784,71 81,09 3358,42 55182,80
150002 251,14 7588,33 ∞ 248,39 9046,13 ∞
200002 579,84 12937,30 ∞ 605,38 14404,76 ∞
250002 980,14 22220,89 ∞ 1065,78 24974,77 ∞
300002 1522,61 35408,11 ∞ 1890,35 41251,21 ∞
400002 3055,39 67076,04 ∞ 4117,65 78056,28 ∞
500002 7173,84 98221,64 ∞ 7618,78 110394,74 ∞

Table 1: Processing time (in seconds) for different terrain sizes from regionws R2 and R3 considering a
memory size of 1GB.

Processing times (sec.)
Terrain Region R2 Region R3

Size EMFlow TerraFlow r.wat.seg EMFlow TerraFlow r.wat.seg

10002 0,74 19,32 6,03 0,98 19,44 5,79
50002 20,02 400,84 630,60 19,98 442,97 513,88
100002 87,66 2251,66 5290,46 86,94 2552,93 3911,23
150002 209,02 5870,34 34252,23 202,36 6869,33 32518,89
200002 437,58 13066,63 ∞ 415,37 13873,60 ∞
250002 776,98 19339,79 ∞ 764,86 22492,14 ∞
300002 1179,31 30364,31 ∞ 1196,58 33337,07 ∞
400002 2254,80 56421,36 ∞ 2162,17 59149,27 ∞
500002 4011,72 82673,22 ∞ 3470,99 86670,30 ∞

Table 2: Processing time (in seconds) for different terrain sizes from regionws R2 and R3 considering a
memory size of 2GB.

Figure 4: Execution Time Charts

after 150000 seconds (40 hours). Figure 4 presents the charts
corresponding to the tables.

Note that EMFlow was faster than the other two algo-
rithms in all situations and, for very huge terrains (as for
50000× 50000), EMFlow was more than 20 times faster than
TerraFlow while r.watershed.seg was not able to conclude the
terrain processing in less than 40 hours.

It is worth to mention that, since EMFlow is based on
RWFlood, the drainage networks computed by these two al-
gorithms are the same. Additionally, as presented in [10],
the drainage networks obtained by RWFlood are very similar
(almost the same) to those computed by r.watershed and Ter-
raFlow. For example, Figure 5 presents the drainage networks
computed by the three methods: EMFlow , TerraFlow and
r.watershed.seg in two terrains: the R3 region and a terrain
from Tapajos2 region. As you can see, the corresponding
networks are very similar.

5. CONCLUSION
This paper presents EMFlow , a new algorithm for drainage

network computation on huge terrains stored in external
memory. EMFlow ’s performance was compared against the
most efficient methods described in the literature: TerraFlow
and r.watershed.seg using many different terrains sizes and,
in all situations, EMFlow was much faster (in some cases,
more than 20 times) than both.

EMFlow adopts a new strategy for terrain subdivision, and
uses a cache strategy to improve the external memory access.

Acknowledgments
This research was partially supported by FAPEMIG, CAPES,
CNPq, GAPSO and NSF grants CMMI-0835762 and IIS-
1117277.

6. REFERENCES
[1] A. Aggarwal and J. S. Vitter, “The input/output

complexity of sorting and related problems,”
Communications of the ACM, vol. 9, pp. 1116–1127,
1988.

[2] L. Arge, J. S. Chase, P. Halpin, L. Toma, J. S. Vitter,
D. Urban, and R. Wickremesinghe, “Efficient flow
computation on massive grid terrain datasets,”
Geoinformatica, vol. 7, 2003.

[3] Y. Collet. (2012) Extremely fast compression algorithm.
[Online]. Available: http://code.google.com/p/lz4/

[4] A. Danner, T. Molhave, K. Yi, P., K. Agarwal, L. Arge,
and H. Mitasova, “Terrastream: from elevation data to
watershed hierarchies,” in Proc. of ACM GIS, 2007, pp.
117–124.

[5] G. GRASS. (2012) Grass gis:r.terraflow. [Online].
Available:
http://grass.fbk.eu/gdp/html grass62/r.terraflow.html

[6] ——. (2012) Grass gis:r.watershed. [Online]. Available:
http:
//grass.fbk.eu/gdp/html grass62/r.watershed.html

[7] ——. (2012) Grass segment library. [Online]. Available:
http://grass.osgeo.org/programming7/segmentlib.html

[8] GRASS Development Team, Geographic Resources
Analysis Support System (GRASS GIS) Software, Open

2Tapajos is an important tributary river of the Amazon basin.

Source Geospatial Foundation, http://grass.osgeo.org,
2010.

[9] S. Jenson and J. Domingue, “Extracting topographic
structure from digital elevation data for geographic
information system analysis,” Photogrammetric
Engineering and Remote Sensing, vol. 54, no. 11, pp.
1593–1600, 1988.

[10] S. V. G. Magalhaes, M. V. A. Andrade, W. R. Franklin,
and G. C. Pena, “A new method for computing the
drainage network based on raising the level of an ocean
surrounding the terrain,” in 15th AGILE International
Conference on Geographic Information Science,
Avignon, France, 2012, pp. 391–407.

[11] M. Metz, H. Mitasova, and R. S. Harmon, “Efficient
extraction of drainage networks from massive,
radar-based elevation models with least cost path
search,” Hydrology and Earth System Sciences, vol. 15,
no. 2, pp. 667–678, Feb. 2011. [Online]. Available:
http://www.hydrol-earth-syst-sci.net/15/667/2011/

[12] I. D. Moore, R. B. Grayson, and A. R. Ladson, “Digital
terrain modelling: a review of hydrological,
geomorphological and biological aplications,”
Hydrological Processes, vol. 5, pp. 3–30, 1991.

[13] J. Muckell, M. Andrade, W. R. Franklin, B. Cutler,
M. Inanc, Z. Xie, and D. M. Tracy, “Drainage network
and watershed reconstruction on simplified terrain,” in
17th Fall Workshop on Computational Geometry, IBM
TJ Watson Research Center, Hawthorne NY, 2–3 Nov
2007.

[14] ——, “Hydrology-aware terrain simplification,” in 5th
International Conference on Geographic Information
Science, Park City, Utah, USA, 2008.

[15] J. O’Callaghan and D. Mark, “The extraction of
drainage networks from digital elevation data,”
Computer Vision, Graphics and Image Processing,
vol. 28, pp. 328–344, 1984.

[16] O. Planchon and F. Darboux, “A fast, simple and
versatile algorithm to fill the depressions of digital
elevation models,” Catena, vol. 46, no. 2-3, pp. 159–176,
2002.

[17] J. A. Silveira, S. V. G. Magalhães, M. V. A. Andrade,
and V. S. Conceição, “A library for external memory
processing of huge matrix in external memory,” in XIII
Brazilian Symposium on Geoinformatics, (to appear).

[18] P. Soille and C. Gratin, “An efficient algorithm for
drainage network extraction on dems,” Journal of
Visual Communication and Image Representation,
vol. 5, no. 2, pp. 181–189, 1994.

[19] D. Tarboton, “A new method for the determination of
flow directions and contributing areas in grid digital
elevation models,” Water Resources Research, vol. 33,
pp. 309–319, 1997.

[20] L. Toma, R. Wickremesinghe, L. Arge, J. S. Chase,
J. S. Vitter, P. N. Halpin, and D. Urban, “Flow
computation on massive grids,” in GIS 2001
Proceedings of the 9th ACM international symposium
on Advances in geographic information systems, 2001.

(a) (b) (c)

(d) (e) (f)

Figure 5: Drainage network of two terrains R3, (a), (b) and (c) and Tapajos, (d), (e) and (f) computed by
three methods: (a) and (d) EMFlow, (b) and (e) TerraFlow, (c) and (f) r.watershed.seg.

