1064

Efficient [terated Rotation of an Object
W. RANDOLPH FRANKLIN

Abstract—This paper presents a more efficient method for iterated rotation
in three dimensions where multiple points are being rotated by multiple angles

Manuscript received October 30, 1980; revised April 18, 1983. This material
is based upon work supported by the National Science Foundation under
Grants ENG 79-08139 and ECS 80-21504. -

The author is with the Department of Electrical, Computer, and Systems
Engineering, Rensselaer Polytechnic Institute, Troy, NY 12181.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-32, NO. ||, NOVEMBER 983

about the same axis, as would be done in robotic simulation or computer graphic
animation. General axes that do not necessarily pass through the origin and
multiple composed rotations are also handled. The algorithm is numerically
well conditioned for all axis directions.

Index Terms— Animation, Cayley-Klein parameters, computer-aided design,
computer graphics, Euler angle, quaternion, robotics, rotation, transforma-
tion.

INTRODUCTION

A frequent operation in computer-aided design (CAD), computer
graphics, and computer-assisted animation is the rotation of an object
or surface in three dimensions. The usual procedure is to rotate certain
fixed points such as vertices or knots such that the remainder of the
object follows automatically. We frequently wish to rotate the same
object repeatedly about the same axis by successively larger angles.
One important use of animation is the verification of programs to
control robot manipulator arms. Foley and Van Dam [4, pp. 254-255]

- present some other efficiency considerations for real-time rotation.

If the object is following a more complicated path, each movement
can be decomposed into a rotation and a translation or alternatively
into two rotations. Optimizing the calculation of the composition of
several iterated rotations is important in robot manipulator languages,
but at present, calculating this in real time “is beyond the capabilities
of most computers” [9, p. 263].

After defining its assumptions and notation, this paper will survey
the various general rotation formulas. Some authors present only
special cases, such as Chasen [1] who describes how to transform a
curve in an oblique plane into another coordinate system. The general
methods include: 1) rotation about the three coordinate axes in turn

- where the axes are either fixed in space or move with the object, 2)

rotation using Euler angles or Cayley-Klein paramcters, 3) rotation
of the coordinate system about the X and ¥ axes to make the axis of
rotation coincident with the Z axis, 4) a vector formulation, and 5)
a quaternion formulation. Finally, new formulas optimized for the
robot manipulator and animation cases will be presented.

ASSUMPTIONS AND NOTATION

We rotate a point, represented as a horizontal three-tuple or
four-tuple, relative to a fixed set of axes. If the transformation is
represented as a matrix, then it postmultiplies the vector representing
the point.

The measures of exccution time will be 74 and 7, respectively,
the number of additions and subtractions, and the number of multi-
plications of floating-point numbers. The time for bookkeeping, in-
teger arithmetic, and so on will be ignored in accordance with con-
ventional procedures. This isolates the essential differences and
suppresses variables that depend more on the compiler's efficiency
than on the algorithm. We will sometimes count 7,, the number of
trignometric evaluations necded in calculating coefficients of an
equation, before it is applicd to the points. Other aspects of this pre-
caiculation time will generally be ignored.

ROTATION ABOUT THE X, Y, AND Z AXES

“This formulation appears in Giloi [5], Foley and van Dam (4, pp.
255-259], Paul [9, pp. 25-27], and Rogers and Adams [I1]}. They
compute a rotation matrix as the composition of the following three
matrices:

RS cosa sina0 A
—sinacos a0
0 _ 0 1
cos 30 —sin 8
01 0
R, (8) = sin 8 0 cos B

0018-9340/83/1100-1064501.00 © 1983 IEEE

IEEE TRANSACTIONS ON COMPUTERS. VOI.. C-32. NO. |1, NOVEMBER 1983 1065
and cos § —sinf 00
1o 0 _|sinf cosf 00
2 . =
Ocosy sinvy 0 0 10
R« 0 —sin ¥ cos ¥ 0 0 01

to give R(a. 8.) = R.(a) X Rl(.a) X Ry(v).

This method is a composition of rotations in the XY, XZ,and YZ
planes in that order. It can be difficult to determine e, 8, and 7 given
the source and destination orientations of some object.

Applying R. (), RJ.(B), and R, (<) successively to the point re-
quires a total of 7, = 12 and 74 = 6. Composing them first to give
R(«x, B,) and then applying that is cheaper since it would cost 7
= 14 and 74+ = 4 for the composition followed by 7, = 9and 74 =
6 per application using the formula for R{a, 8,) given in [5, p.
96].

Paul gives a method for determining the single axis and angle of
rotation to which a gencral rotation matrix is equivalent. He also
presents important numerical accuracy considerations for this op-
eration, and gives the formulas for the general matrix. The axis of the
general rotation can also be determined as the eigenvector of R(«,
B, v) with a corresponding cigenvalue of unity. The angle can be
determined from the other two eigenvalues, which are complex and
have the form

cos § £ isinf.

ROTATION BY EULER ANGLES

An alternative rotation uses the Euler angles (2, pp. 174-177], [7),
[9, pp. 43-45]. ¢, 0, and ¥ which represent a rotation by ¢ about the
Z axis, followed by a rotation by # about the new X axis, and con-
cluded by a rotation by ¥ about the newer Z axis. These three rota-
tions may equivalently be applied in the reverse order about the fixed
world axes. The combined rotation matrix is R.(¢, 8,¥) = R.(y) X
R.(8) X R-(¢). . -

The execution times are the same as before, thatis, 7, =9and 74
=6if R.(¢), R\ (8), and R.(y) are combined into one matrix before
being applicd. Paul gives the resulting matrix.

The three Euler angles can also be expressed asa 2 X 2 matrix of
complex Cayley-Klein parameters (6]

afl -
ya

exp—i¢/2 0 l
0 expig/2

If we are given two rotations that are to be combined, then the Cay-
ley-Klein parameter matrix of the combination is the product of the
parameter matrices of the original rotations. From this, we can de-
termine the Euler angles of the combined rotation.

ROTATION ABOUT THE X, ¥, Z, ¥, AND X AXES IN TURN

Newman and Sproull (8] apply the following five matrices for a
rotation about the origin:

R= R\R;RyR3'RT!
where

10 00
Ocv b0
0=blocv0
0 0 01

"R = where v = /b2 + (2

v 0al
0 100
-alv 0
0 001

Ry =

cos /2 —isinf/2
—isin8/2 cosf/2

Here (a, b, ¢) is a unit vector along the rotation axis and 8 is the
angle of rotation. This method essentially performs the rotation in
a coordinate system where the axis of rotation is coincident with the
z axis, which is ill conditioned if (a. b, ¢) is almost coincident with
(1,0, 0). Multiplying by each of the five matrices requires 7, = 4 and
r+ =2 foratotalof 7, =20and 74 = 10.

If the five matrices are first composed, costing 7, = 40and 74 =
18 (where multiplications by 0 or 1 or additions of 0 are not counted),
then applying the resulting 4 X 4 matrix requires 7, = 9and 74 =
6 (since the fourth row and column will be changed). This is advan-
tageous if the same rotation matrix is being used more than about
three times (depending on the relative costs of the additions, multi-
plications, and bookkeeping).

A VECTOR FORMULATION

Faux and Pratt [3] have a vector representation:
P =(p-uu+cos8(p—(p-u)u) +sinb(u X p). 1)

See Fig. 1. Here point p is being rotated about axis u through the
origin by angle 8. *-" and *X" are the scalar (dot) and vector (cross)
products, respectively. Since a dot product costs 7, = 3and 74 = 2
and a cross product costs 7, = 6 and 74+ = 3, (1) requires 7, = 24 and
74+ = 16. While this appears slower than the previous formulations,
the input, i.e., the axis direction and angle of rotation, is in a form that
is easy to visualize. Also, the setup calculations required are just one
sine and one cosine, which compares quite favorably to the matrix
initializations required in the previous methods. Thus, for small
objects where the setup time for the matrices is longer than the time
to apply them, this method is faster.

Pavlidis [10] derives a rotation formula about an axis specified by
its direction cosines using vector and tensor notation, and he then
determines the rotation matrix from it.

QUATERNIONS
The quaternion representation [2, pp. 168-172] is both very

exp—iy/2 0 _
0 expiy/2

compact and allows us to determine the axis and angle of the single
rotation resulting from the composition of several rotations. (A
quaternion ¢ = a + bi+ cj+ d k is a noncommutative extension of
a complex number where 2 = 2= k2 = —| and ij = —ji= k, jk=
~kj= i, ki= =ik = j). A 3-D point (p,, py, p:) can be represented
as a pure quaternion:

p=pii+pj+p:k

A rotation of p about axis u, where u is a unit vector, by angle 6 can
be expressed as

P = qpq* (2)
where
g=cos8/2 + (usi+u,j+uk)sin8/2

and g* is the quaternion conjugate of g. Its execution times are 7
= 24 and 74 = 16. Equation (2) is quite compact. The quaternion and
vector formulations use only four numbers to represent a general
rotation, unlike a 3 X 3 matrix representation which requires nine
numbers. .
If we rotate p by g, to get p’ and then by g; to get p”, we have

P = qpqi
P =qre

P

Fig. 1. Rotation about an axis by an angle. (Note: characters with
underbars appear boldface in text.)
so that
P’ = qoPg;
where
qo = §24;

using quaternion multiplication. go can be casily separated into the
axis and angle of the combined rotation.

ROTATION ABOUT AN AXIS NOT PASSING THROUGH THE
ORIGIN

To rotate a point about an axis not passing through the origin, there
are two methods that can be combined with any rotation formula.

1) We can translate the point before and after, at an extra cost of
T+ = 6. Thus, to rotate point p with rotation matrix R about the
center of rotation d to give point p’, we have

P=R(p-d+d (3)

2) If we are rotating several points with the same R and d, then
it is cheaper to calculate

f=d-Rd
so that
P=Rp+f 4)

The time to calculate (4) is three additions more than the time to
calculate Rp, which varies for the different methods. Calculating £
is the same as applying (4) once. Equation (4) is faster than (3) when
many points are being rotated about the same axis through the same
angle; the breakeven point depends on the particular method used.
For example, for rotation by a general 3 X 3.matrix, and assuming
that additions and multiplications cost the same, then (4) is faster than
(3) if more than six points are being rotated.

A MORE EFFICIENT FORMULA

Il we desire to multiply the same point or set of points by many
angles, then the matrices in the above formulations must be recal-
culated anew for each angle. We will transform (1) above into a form
more suited to iterated rotations by separating (1) into a combination
of components depending on # alone and components depending only
on pand u:

pl=(p: uu
p2=p—pl
p3=uXp

IEEE TRANSACTIONS ON COMPUTERS. VOL. C-32. NO. 11. NOVEMBER 1983

so that
P = pl + p2cos @ + p3sinf. (5)

Now we need to compute pl, p2, and p3 only once per point at a
cost of T, = 12and 74 = 8 if we are willing to store nine numbers per
point. For simplicity, we assume that each number requires one word
of storage. For each angle, we calculate and store sin (8) and cos (6).
Then, for each (point, angle) pair in an iterated rotation, we need to
spend only 7, = 6 and 74+ = 6. In (5), we can make space/time
tradeoffs such as calculating p2 instead of storing it to save three
words per point memory, but requiring an extra 74 = 3 to calculate
each (point, angle) pair.

In contrast to the other methods, (5) is just as fast when the axis
of rotation is not through the origin. Let

pl=(p~d)-uu+d
p2=p-pl
p3=uX(p-d).
Then we still obtain
P =pl+p2cos+ p3siné. (5)

If Af is fixed as we vary 6, then there are two cases. If the points
remain the same, then we can reapply (5) to the transformed points.
Alternatively, if the points are different, as would happen if this
rotation is only one of a sequence of transformations that are all
varying then we can use either a lookup table for-sin (#) and cos (8)
or alternatively just calculate sin (8 + A8) and cos (f + A8) with
difference equations. If we use a fifth-order approximate equation
for each component of g/, then each iteration of each equation costs
only five additions, so the total cost, including the trig functions, of
evaluating (5) is 7, = 0and 74 = 15. Such an iteration would be more
difficult with the rotation formats that combine three rotations about
the coordinate axes. It is also possible to use the trignometric angle
addition formulas atacostof 7, = 4and 7, = 2;

sin (6 + Af) = sin 8 cos A@ + sin Af cos 0
cos (8 + AB) = cos 8 cos AB — sin 8 sin A9, (6)

Assuming that sin (), cos (), sin (A8), and cos (Af) are already
known, evaluating (5) at a new angle costsonly 7, = 10and 74 = 8
and requires no more trig evaluations. Equations (6) also can be used
for the other rotation formulas as long as they are defined in terms
of only one angle.

Equation (5) also handles the case of several composed rotations,
such as in a robot manipulator arm where we are iterating one of the
angles. In matrix notation, let

P = pRi(0)R(62) - - R ().

Each R;(6;) represents a rotation about some fixed axis by the angle
6;. The rotations can be applied in order from R| to Ry, with each R;
operating in the fixed world coordinate system or, equivalently, they
can be applied in the reverse order from Ry to R in a reference frame
rotating with the object. If we are varying only one of the 8; while
keeping the others fixed, then (5) still applies, with 8 = 8,. However,
now the formulas for p1, p2, and p3 are more complicated.

If we are varying all k of the §; simultaneously, then there are two
choices. Since p’ is a multilinear function in all the sin (6;) and cos
(6;), we could calculate the coefficients of the single resulting equation
and evaluate it. However, it is more efficient to apply (5) separately
for each R;.

SUMMARY

Table 1 lists the number of additions and multiplications to rotate
a point about an axis for the various methods, assuming that we are
rotating many points through many angles about the same axis. Both
the special case of the axis passing through the origin and the general
case are given. Bookkeeping and setup costs are ignored, except for

BEE TRANSACTIONS ON COMPUTERS. VOL., C-32. NO. 11, NOVEMBER 1983

TABLE 1
OPERATION COUNTS FOR VARIOUS METHODS OF ROTATION
Axis Thrul Gemeral Axis |
Origin + *

METHOD | Eqn (3) i_!ql (4)

!t,!ulr"lult,lq %

Rotation about X, ¥, Z -

axss, combined matrices 9 6 9|12 9 9 [}
separate matrices 12 6§ 112112112 9 [1

Rotstion with Euler Angles |
| combined matrices 9| 61 9112 9 9 6
| separate matrices 12 61121121 12 9 6

Rotation about X, ¥, Z, Y,-

Z axes, combined matrices 9 (1 9| 12 9 9 2 1

separate matrices | 20 | 16 | 20 | 22 | 20 | 19 i

Vector method 24 | 16 | 24 1 22] 241291 2

| Quatersiom method 24 | 16 | 24 | 22-1 24 | 19 2

| New Method, exact § § 6 [6 [2
l approximate ol 1s 0l 1s ol 1s [
| I

TABLE 11
CosTS OF FORMING COMBINED MATRICES FOR MATRIX METHODS
| Operatioa
Count

O —
I o= | o=

Method

—-l——4

Rotstion about I, Y, Z Axes
Rotation with Enler Angles
Rotation about X, ¥, Z, T, X Azes

[
e e s
- .

the last column which shows 7,. the number of sine and cosine eval-
uations necded for the setup. For the three matrix methods, the several
component matrices can be applied separately or they can first be
combined to form onc matrix, at a cost shown in Table 11, which is
then applied to the point. For rotation about a general axis, Table |
shows the costs of both submethods of cach method (3) and (4). The
only exception is for the new method, where (3) and (4) do not directly
apply. since the new method has a faster form of rotation about a
general axis. It is this time which is listed for the new method under
the general axis columns.

The new exact method presented here is § faster for iterated rota-
tions of many points through many angles about a general axis that
does not pass through the origin. Its approximate version requires no
multiplications or trig evaluations and only 15 additions per point.
This method is well conditioned for all axes, in contrast to the next
best method, and allows a space-time tradeoff where some values can
be either stored or recalculated several times. It is applicable to cases
of several combined rotations as in a robotic arm. This will allow more
efficient robotic simulation and graphic animation.

REFERENCES

(1] S. H. Chasen, Geomerric Principles and Procedures for Computer
Graphic Applications. Englewood Cliffs, NJ: Prentice-Hall, 1978, pp.
143-144.

[2] H.C.Corden and P. Stehle, Classical Mechanics. New York: Wiley,
1950, p. 168 ff.

(3] I D. Faux and M. J. Pratt. Computational Geometry for Design and
Manufacture. Halstead, 1979, pp. 70-74.

{4] J. D. Foley and A. Van Dam, Fundamentals of Interactive Computer
Graphics. Reading, MA: Addison-Wesley Systems Programming
Series, 1982,

(5] W.G. Giloi, Interactive Computer Graphics. Data Structures. Algo-
rithms and Languages. Englewood Cliffs. NJ: Prentice-Hall, 1978,
pp. 92-107.

1067

(6] H. Goldstein, Classical Mechanics, 2nd ed., 1980.
(7] W.R. Hamilton, Elements of Quaternions, 2 vol. New York: Chelsea,
1969.
[8] W.M. Newman and R. F. Sproull, Principles of Computer Graphics,
2nd ed. New York: McGraw-Hill, 1979, pp. 346-352.
[9] R. P. Paul, Robot Manipulators: Mathematics, Programming, and
Control. The Computer Conirol of Robot Manipulators. Cambridge,
MA: M.L.T. Press, 1981.
[10] T. Pavlidis, Algorithms for Graphics and Image Processing. Computer
Science Press, 1982, pp. 366-367,
[11] D.F.Rogersand J. A. Adams, Mathematical Elements for Compuier
Graphics. New York: McGraw-Hill, 1976, pp. 49-51.
[12] T. R. Kane and P. W. Likens, Spacecraft Dynamics.
McGraw Hill, 1983, ch. I.
[13] J. Rooney, “Survey of representations of spot rotation,” Environment
and Planning, Serics B, pp. 185-210, 1977.

New York:

0018-9340/83/1100-1067%01.00 © 1983 IEEE

