
More efficient terrain viewshed computation on massive
datasets using external memory

Chaulio R. Ferreira
Universidade Fed. de Viçosa

Viçosa, MG, Brazil
chaulio.ferreira@ufv.br

Salles V. G. Magalhães
Universidade Fed. de Viçosa

Viçosa, MG, Brazil
salles@ufv.br

Marcus V. A. Andrade
Universidade Fed. de Viçosa

Viçosa, MG, Brazil
marcus@ufv.br

W. Randolph Franklin
Rensselaer Polytechnic Inst.

Troy, NY, USA
wrf@ecse.rpi.edu

André M. Pompermayer
Universidade Fed. de Viçosa

Viçosa, MG, Brazil
andre.pompermayer@ufv.br

ABSTRACT
We present a better algorithm and implementation for ex-
ternal memory viewshed computation. It is about four times
faster than the most recent and most efficient published
methods. Ours is also much simpler. Since processing large
datasets can take hours, this improvement is significant. To
reduce the total number of I/O operations, our method is
based on subdividing the terrain into blocks which are stored
in a special data structure managed as a cache memory.

The viewshed is that region of the terrain that is visible
by a fixed observer, who may be on or above the terrain. Its
applications range from visual nuisance abatement to radio
transmitter siting and surveillance.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Ge-
ometrical problems and computations

General Terms
Algorithms, Experimentation, Performance

Keywords
Terrain modeling, GIS, External memory processing

1. INTRODUCTION
Terrain modeling has been widely used in Geographical

Information Science (GIS) including applications in hydrol-
ogy, visibility and routing. In visibility applications it is
usual to compute which points can be viewed from a given
point (the observer) and the region composed of such points,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGSPATIAL GIS ’12, November 6-9, 2012. Redondo Beach, CA,
USA Copyright (c) 2012 ACM ISBN 978-1-4503-1691-0/12/11...$15.00.

known as viewshed [6]. Some applications include minimiz-
ing the number of cellular phone towers required to cover a
region [3], optimizing the number and position of guards to
cover a region [7], etc.

There are various algorithms for viewshed computation
but most of them were designed assuming that the terrain
data fits in internal memory. However, the huge volume of
high resolution terrestrial data available has become a chal-
lenge for GIS since the internal memory algorithms do not
run well for such volume of data on most computers. Thus,
it is important to optimize the massive data processing algo-
rithms simultaneously for computation and data movement
between the external and internal memory since processing
data in external memory takes much more time. That is,
the algorithms for external memory should be designed (and
analyzed) considering a computational model where the al-
gorithm complexity is evaluated based on I/O operations. A
model often used was proposed by Aggarwal and Vitter [1]
where an I/O operation is defined as the transfer of one disk
block of size B between the external and internal memory
and the performance is measured considering the number
of such I/O operations. The internal computation time is
assumed to be comparatively insignificant. An algorithm’s
complexity is related to the number of I/O operations per-
formed by fundamental operations such as scanning or sort-
ing N contiguous elements. Those are scan(N) = θ(N/B)

and sort(N) = θ
(
N
B

logM/B
N
B

)
where M is the internal

memory size.
This work presents an efficient algorithm, named TiledVS,

to compute the viewshed of a point on terrains stored in
external memory. The large number of disk accesses is opti-
mized using a new library to manage the data swap between
the external and internal memories. This new algorithm was
compared against the most recent and most efficient pub-
lished methods: EMViewshed [2] and io radial2, io radial3
and io centrifugal [4]. Our new method is much simpler and,
also, the tests showed that it is more than four times faster
than all of them. Since processing large datasets can take
hours, this improvement is significant.

2. DEFINITIONS AND RELATED WORKS
A terrain is a tridimensional surface τ where any vertical

line intersects τ in, at most, one point. In this paper we
will consider terrains represented by Raster Digital Eleva-

tion Models (DEMs) [5] since they use simpler data struc-
tures, i.e., matrices storing the elevations of regularly spaced
positions of the terrain.

An observer is a point in the space from where the other
terrain points (the targets) will be visualized. Both the ob-
server and the targets can be at a given height above the
terrain, respectively indicated by ho and ht. Usually, it is
assumed that the observer has a range of vision ρ, the radius
of interest, which means that the observer can see points at
a given distance ρ. Thus, a target T is visible from O if
and only if the distance of T from O is, at most, ρ and the
straight line, the line of sight, from O to T is always strictly
above the terrain. See Figure 1.

Figure 1: Target’s visibility: T1 and T3 are not visible
but T2 is.

The viewshed of O corresponds to all points that can be
seen by O. Since we are working with raster DEMs, we
represent a viewshed by a square (2ρ+ 1)× (2ρ+ 1) matrix
of bits where 1 indicates that the corresponding point is
visible and 0 is not. By definition, the observer is in the
center of this matrix.

Earlier works have presented different methods for view-
shed computation. Among the methods for DEM terrains,
we can point out the one proposed by Van Kreveld [9], and
the one by Franklin et al., named RFVS [6]. These two
methods are very efficient and are particularly important in
this context because they were used as the base for some
very recent and efficient methods for the viewshed compu-
tation in external memory: Fishman et al. [4] adapted Van
Kreveld’s method, and Andrade et al. [2] adapted the RFVS
method. This work also presents an IO-efficient adaptation
of the RFVS method. Therefore, below we will give a short
description of the RFVS method.

In that method, the terrain cells’ visibility is computed
along rays connecting the observer to all cells in the bound-
ary of a square of side 2ρ+ 1 centered at the observer where
ρ is the radius of interest. That is, the algorithm creates a
ray connecting the observer to a cell on the boundary of this
square, and this ray is counterclockwise rotated around the
observer following the cells in that boundary and the visibil-
ity of the cells in each ray is determined following the cells
on the segment. Thus, suppose the segment is composed by
cells c0, c1, · · · , ck where c0 is the observer’s cell and ck is a
cell in the square boundary. Let αi be the slope of the line
connecting the observer to ci and let µ be the highest slope
among all lines already processed, that is, when processing
cell ci, µ = max{α1, α2, · · · , αi−1}. Thus, the target on ci
is visible if and only if the slope of the line from O to the
target above ci is greater than µ. If yes, the corresponding
cell in the viewshed matrix is set to 1; otherwise, to 0. Also,
if αi > µ then µ is updated to αi. We say that a cell ci
blocks the visibility of the target above cj if cell ci belongs
to the segment c0cj and αi is greater or equal to the slope
of the line connecting the observer to the target above cj .

3. TiledVS METHOD
As mentioned in section 2, the RFVS sweeps the terrain

cells rotating a ray connecting the observer cell to a cell
in the boundary of a bounding box and the cells’ visibility
is processed along this ray. Thus, the matrix access pattern
presents a spatial locality of reference, that is, in a short time
interval, the accessed cells are close in the matrix. However,
this access pattern is not efficient in external memory since
the cells which are close in the (bidimensional) matrix may
not be stored close because, usually, a matrix is stored using
a linear row-major order.

To reduce the number of non-sequential accesses, we present
a new method, called TiledVS, where the basic idea is to
adapt the RFVS algorithm to manage the access to the ma-
trices stored in external memory using the library TiledMa-
trix [8]. In brief, this library subdivides the matrix in small
rectangular blocks (tiles) which are sequentially stored in the
external memory. When a given cell needs to be accessed,
the whole block containing that cell is loaded into the inter-
nal memory. The library keeps some of these blocks in the
internal memory using a data structure, named MemBlocks,
which is managed as a “cache memory” and the replacement
policy adopted is based on least recently used - LRU. That
is, when a block is accessed it is labeled with a timestamp
and if it is necessary to load a new block into the cache
(and there is no room for this block), the block with smaller
timestamp is replaced with the new block. When a block is
evicted, it is checked if that block was updated (it is par-
ticularly important for the viewshed matrix); if any cell was
updated then the block is written back to the disk.

Now, we will show that it is possible to define the Mem-
Blocks size such that the adopted matrix partitioning asso-
ciated with the LRU policy can be effective for the RFVS
algorithm, that is, we will prove that this process will load
a block in the cache, keep it there while it is accessed and it
will be evicted only when it will be no longer needed.

In the following, we will suppose that the matrix partition-
ing creates square blocks with ω × ω cells and these blocks
are grouped in vertical bands with ω columns of cells. See
figure 2. And, given a ray r defined by the RFVS algorithm,
without loss of generality, in the demonstrations below, we
will consider rays whose slope is, at most, 45◦. For rays with
greater slope just replace rows with columns.

(a) (b)

Figure 2: Matrix partitioning: (a) square blocks
with 3× 3 cells; (b) vertical bands with 3 columns.

Lemma 3.1. Any ray intersects, at most, ρ
ω

+ 2 bands
where ρ is the radius of interest (in number of terrain cells).

Proof For the viewshed computation, the RFVS algorithm
defines a square bounding box of side 2ρ+1 with the observer

on its center and creates rays connecting the observer to the
center of the cells in the square border. Since any ray whose
slope is, at most, 45◦ intersects ρ+1 columns in this square,
this ray intersects d ρ+1

ω
e+ 1 vertical bands. The additional

+1 is because the observer may not be in the central column
of a band (notice that, if the observer in the Figure 2(b)
is moved one cell to the right, ray r0 will cross the last
band boundary and will intersect an aditional band). Since
d ρ+1
ω
e = b ρ

ω
c+ 1 then d ρ+1

ω
e+ 1 ≤ ρ

ω
+ 2.

Lemma 3.2. Let rk and rk+1 be two consecutive rays in
the RFVS algorithm sweeping. Then these two rays inter-
sect, at most, 2

(
ρ
ω

+ 2
)

blocks.

Proof Since the RFVS algorithm uses the Bresenham ras-
terization method, there is exactly one cell for each column
intersected by a ray. Let lr and cr be respectively the num-
ber of rows and columns intersected by a ray r. As the ray
slope is, at most, 45◦ then lr ≤ cr.

Given two consecutive rays rk and rk+1, the vertical dis-
tance between them is, at most, one cell side - see Fig-
ure 3(a). As, for each vertical band, they intersect ω columns,
they can intersect, at most, ω + 1 rows in that band. Thus,
in each band, they can intersect, at most, two blocks (since
the block height is ω rows). Therefore, from Lemma 3.1,
rays rk and rk+1 can intersect, at most, 2

(
ρ
ω

+ 2
)

blocks.

Lemma 3.3. Let r0 be the first ray in the sweeping se-
quence. Given a block B not intersected by r0, let rk and
rk+1 be two consecutive rays. If rk intersects B and rk+1

doesn’t, then no other ray after rk will intersect block B.

Proof It is straightforward from the fact that the algorithm
uses a radial sweeping sequence and the blocks are convex.
And it doesn’t work for the blocks intersected by ray r0
because, considering the radial sweeping, these blocks can
be intersected again by the last rays. See Figure 3(b).

Theorem 3.4. Given a block B not intersected by r0,
if the MemBlocks size (in number of blocks) is, at least,
2
(
ρ
ω

+ 2
)

then the LRU policy will evict block B from Mem-
Blocks only if it is no longer needed.

Proof Suppose that MemBlocks has 2
(
ρ
ω

+ 2
)

slots to store
the blocks. Let rk and rk+1 be two consecutive rays such
that rk intersects block B. At some point during the pro-
cessing of ray rk, block B will start to be processed and it
is stored in the MemBlocks (if rk is the first ray intersecting
block B then B will be loaded in MemBlocks). Now, if ray
rk+1 also intersects block B, this block needs to be processed
again. But, the MemBlocks size is enough to avoid block
B eviction because, let B′1, B

′
2, · · · , B′j be the sequence of

blocks that need to be processed among the twice processing
of B, that is, it is the sequence of blocks to be processed after
B in the ray rk and before B in ray rk+1. From lemma 3.2,
j ≤ 2

(
ρ
ω

+ 2
)

and since B is not included in the sequence

then j < 2
(
ρ
ω

+ 2
)
. Thus, if MemBlocks size is 2

(
ρ
ω

+ 2
)

then it has slots to store all blocks that need to be processed
and B will not be evicted. In other words, the LRU policy
will not evict block B because the distinct blocks that need
to be accessed can be stored in MemBlocks.

On the other hand, if ray rk+1 doesn’t intersect block B
then, from lemma 3.3, no other ray after rk will intersect
B and thus, it can be evicted since it is no longer needed.

There is a special situation for the blocks intersected by r0
because, after being evicted, they can be loaded again when
processing the last rays. But, notice that these blocks can
be loaded, at most, twice. See Figure 3(b) where block B′ is
loaded in the processing of r0, is evicted after the processing
of rm and it is loaded again when processing rn.

It is possible to demonstrate that the TiledVS algorithm
does θ(scan(N)) I/O operations and takes θ(N) time to pro-
cess a terrain with N cells considering that the memory can
store 2

(
ρ
ω

+ 2
)

blocks. This complexity works even if the
radius of interest ρ is large to cover the whole terrain.

(a) (b)

Figure 3: (a) Blocks intersected by two consecutive
rays; (b) Block B′ is loaded because of ray r0, is
evicted after ray rm and loaded again for ray rn.

4. EXPERIMENTAL RESULTS
The TiledVS method was implemented in C++ and com-

piled with g++ 4.3.4. It was compared against the most ef-
ficient algorithms recently described in literature: io-radial2,
io-radial3 and io-centrifugal, proposed by Fishman et. al. [4],
and EMViewshed, proposed by Andrade et al. [2].

Lacking access to Fishman’s programs, we compared our
algorithm to his published results. We executed our algo-
rithm using the same datasets and also a same platform as
that one used by those authors, i.e. a computer with an Intel
Core 2 Duo E7500 2.93GHz processor, 4GiB of RAM mem-
ory, and a 5400RPM SATA HD (Samsung HD103SI) which
was rebooted with 512MiB RAM. The operational system
used was Linux, Ubuntu 10.04 32bits distribution.

Our results are presented in Table 1 and Figure 4 where
we reproduce the times presented in [4]. Notice that our
algorithm is faster than the others in all situations and, on
huge terrains, it is about 4 times faster. Also, the table
includes the processing time of our algorithm on very huge
terrains generated by interpolation of Region02.

We also compared our new algorithm TiledVS against our
previous one EMViewshed [2]. We used different datasets
generated from two distinct USA regions sampled at differ-
ent resolutions using 2 bytes per elevation value. The re-
sults are presented in Table 2. Note that our new algorithm
TiledVS is about 7 times faster than our previous one.

Table 3 presents the TiledVS running time (in seconds)
for different terrain sizes using only 128MiB and 512MiB of
RAM. As can be noticed, our algorithm is scalable to data
that is much bigger than the machine internal memory.

5. CONCLUSION
We presented a new algorithm for viewshed computation

on huge grid terrains stored in external memory. Our new
method uses a special data structure to manage the data

Table 1: Running time (in seconds) and CPU utilization (in parentheses) for io-radial2, io-radial3, io-
centrifugal and TiledVS with 512MiB RAM.

Dataset Size io-radial2 io-radial3 io-centrifugal TiledVS
cols × rows GiB

Cumberlands 8 704 × 7 673 0.25 72 (84%) 104 (91%) 35 (49%) 17 (97%)
USA DEM 6 13 500 × 18 200 0.92 2,804 (13%) 458 (84%) 115 (57%) 85 (77%)
USA DEM 2 11 000 × 25 500 1.04 1,883 (34%) 735 (87%) 121 (54%) 98 (77%)
Washington 31 866 × 33 454 3.97 13,780 (22%) 3,008 (89%) 676 (41%) 386 (73%)

SRTM1-region03 50 401 × 43 201 8.11 37,982 (16%) 6,644 (81%) 2,845 (17%) 994 (69%)
SRTM1-region04 82 801 × 36 001 11.10 8,834 (79%) 5,341 (11%) 1,347 (69%)
SRTM1-region04 68 401 × 111 601 28.44 26,193 (61%) 12,186 (18%) 5,034 (71%)
Region02 interp. 100 000 × 100 000 37.26 5,079 (77%)
Region02 interp. 150 000 × 150 000 83.82 12,642 (72%)

transference between the internal and external memory re-
ducing the number of I/O operations. For terrains with N
cells, its I/O completixy is Θ(scan(N)).

Table 2: Running time (seconds) for EMViewshed
(EMVS) and TiledVS with 1024MiB RAM.

Size EMVS TiledVS
cols × rows GiB

30 000 × 30 000 1.68 727 256
40 000 × 40 000 2.98 3168 515
50 000 × 50 000 4.65 5701 812
60 000 × 60 000 6.71 8961 1265

Table 3: TiledVS running time (seconds) using a
RAM memory with 128MiB and 512MiB.

Terrain Size RAM Size
cols × rows GiB 128MiB 512MiB

37 000 × 37 000 5 634 604
52 000 × 52 000 10 1277 1168
73 500 × 73 500 20 3324 2708

104 000 × 104 000 40 7511 5612

The algorithm was compared against the most recent and
efficient algorithms in the literature and, as the tests showed,
it was faster than all others. In general, it was about 4 times
faster and this improvement is significant because processing
huge terrains can take hours. Also, it is much simpler.

Addionally, the algorithm was able to process huge ter-
rains using few RAM memory. For example, the viewshed
of a whole terrain of size 40 GiB, using 128 MiB RAM was
computed in 7511 seconds.

The algorithm souce code (in C++) is avalable and dis-
tributed under Creative Common GNU GPL license at
http://www.dpi.ufv.br/~marcus/TiledVS.htm

Acknowledgments
This research was partially supported by FAPEMIG, CAPES,
CNPq, GAPSO and NSF grants CMMI-0835762, IIS-1117277.

6. REFERENCES
[1] A. Aggarwal and J. S. Vitter. The input/output

complexity of sorting and related problems.
Communications of the ACM, 9:1116–1127, 1988.

Figure 4: The running time of the four methods.

[2] M. V. A. Andrade, S. V. G. Magalhães, M. A.
Magalhães, W. R. Franklin, and B. M. Cutler. Efficient
viewshed computation on terrain in external memory.
GeoInformatica, pages 381 – 397, 2011.

[3] B. Ben-Moshe, Y. Ben-Shimol, and M. S.
Y. Ben-Yehezkel, A. Dvir. Automated antenna
positioning algorithms for wireless fixed-access
networks. Journal of Heuristics, 13(3):243–263, 2007.

[4] J. Fishman, H. J. Haverkort, and L. Toma. Improved
visibility computation on massive grid terrains. In
O. Wolfson, D. Agrawal, and C.-T. Lu, editors, GIS,
pages 121–130. ACM, 2009.

[5] L. D. Floriani, E. Puppo, and P. Magillo. Applications
of computational geometry to geographic information
systems. In J. U. J. R. Sack, editor, Handbook of Comp.
Geom., pages 303–311. Elsevier Science, 1999.

[6] W. R. Franklin and C. Ray. Higher isn’t necessarily
better - visibility algorithms and experiments. In 6th
Symp. on Spatial Data Handling, Edinburgh, 1994.

[7] W. R. Franklin and C. Vogt. Tradeoffs when multiple
observer siting on large terrain cells. In 12th Int. Symp.
on Spatial Data Handling, 2006.

[8] J. A. Silveira, S. V. G. Magalhães, M. V. A. Andrade,
and V. S. Conceição. A library for external memory
processing of huge matrix in external memory. In XIII
Brazilian Symposium on Geoinformatics. (to appear).

[9] M. van Kreveld. Variations on sweep algorithms:
efficient computation of extended viewsheds and class
intervals. In Symp. on Spatial Data Handling, pages
15–27, 1996.

