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Abstract 

We present a new and faster internal memory method to compute the drai-

nage network, that is, the flow direction and accumulation on terrains 

represented by raster elevation matrix. The main idea is to surround the 

terrain by water (as an island) and then to raise the outside water level step 

by step, with depressions filled when the water reaches their boundary. 

This process avoids the very time-consuming depression filling step used 

by most of the methods to compute flow routing, that is, the flow direction 

and accumulated flow. The execution time of our method is very fast, and 

linear in the terrain size. Tests have shown that our method can process 

huge terrains more than 100 times faster than other recent methods. 

1 Introduction 

An important component of terrain analysis in geographic information sys-

tems (GIS) is the computation of hydrologic structures such as flow direc-

tion and accumulated flow.  These structures are usually extracted from 
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digital elevation models (DEMs) stored as a matrix.  The critical issues for 

computing these elements are assigning directions over flat areas and 

processing depressions.  Traditionally, the depressions are removed by in-

creasing the cell's elevation to the minimal elevation of the cells on the de-

pression boundary.  Then the flow over the flat area is directed to the low-

est cells on the flat area boundary. All that is very time-consuming.  The 

long execution time of those operations is more critical now because of 

many huge terrains available covering broad regions with very high resolu-

tion, from STRM (SRTM 2011) and IFSARE (Jakowatz Jr. et al. 1996). 

As described by Metz (Metz et al. 2011), even with recent significant 

advances in flow routing algorithms, accurate extraction of drainage net-

works from DEMs remains challenging.  The problems are the depressions 

and flat areas arising during the DEM generation, from interpolation errors 

or the limited spatial resolution used. Usually they arise because of the in-

terference during the elevation mapping and the majority of depressions 

are spurious. Thus, they need to be removed before the flow routing com-

putation. 

There are many methods for handling depressions and flat areas.   Most 

of them (O'Callaghan and Mark, 1984; Tarboton, 1997; Arge et al., 2003; 

Danner et al., 2007; Zhu et al., 2006; Planchon and Darboux, 2002; Wang 

and Liu, 2006; Yong-he et al., 2009) remove depressions by increasing the 

cell's elevation to fill the sinks and then directing the flow over the flat 

area to the lowest cells on the flat area boundary. Some others (Grimaldi et 

al., 2007; Santini et al., 2009) after sink filling, force a flow direction by 

creating a gradient in the flat areas.  

Those strategies, which modify the elevation values to remove the de-

pressions, assume that they are artifacts introduced during the digital mod-

el generation. Recently, Metz (Metz et al., 2011), described an alternative 

approach based on (Ehlschlaeger, 1989) to handle depressions using the 

least cost drainage paths where the elevation values are not changed. This 

method is implemented in GRASS (GRASS, 2011), an open source/free 

general purpose geographical information system. 

In this paper, we present a new and faster terrain flow computation me-

thod. The proposed method surrounds the terrain by water (as an island).   

Then it raises the outside water level step by step, and fills the depressions 

when the water reaches their boundary.  The implementation execution 

time of our method is very fast, and linear in the terrain size.   It was tested 

against some other methods, both classic and recent, such as ArcGIS and 

GRASS modules r.watershed (Metz et al., 2011) and r.terraflow (Arge et 

al., 2003). As the tests have shown, our method can process huge terrains 

more than 100 times faster than existing methods.  
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2 The Proposed Algorithm 

The basic idea of the proposed algorithm, named RWFlood, is to remove 

the depressions by simulating the raising of an imaginary ocean that sur-

rounds the terrain. In this process the terrain is supposed to be an island 

surrounded by water that is iteratively raised. When the water level in-

creases, it gradually floods the terrain cells and when it reaches a depres-

sion, the depression is filled by “water”. That is, in the beginning, the wa-

ter level is set to the elevation of the lowest cell in the terrain boundary, 

which means that these lowest cells are flooded. Then all cells adjacent to 

these flooded cells are stored for future processing.   But, those cells that 

are lower than the current water level are raised to the current level. See 

Figure 1. 

While similar to (Yong-he et al., 2009), RWFlood is much improved.  

First, since the terrain elevations can be stored as 16-bit integers (Farr et 

al., 2007; SRTM, 2011), it is possible to raise the water level in discrete 

increments. That is, the water level is initialized to the lowest elevation in 

the terrain boundary and, at each step, it is incremented by 1 until it reach-

es the highest terrain elevation.  

Next, RWFlood uses an array Q of queues for the cells that need to be 

stored for later processing. Q contains one queue for each elevation --- 

queue Q[m] stores the cells (to be processed) with elevation m.  Initially, 

each cell in the terrain boundary is inserted into the corresponding queue. 

Supposing the lowest cells have elevation k, the process starts at queue 

Q[k] and, for each elevation z (water level) such that Q[z] is not empty, a 

cell is removed (conceptually, it is flooded) and its neighbors are visited. 

That is, given a neighboring cell v, if v has already been visited, it is done; 

on the other hand, if v has not been visited yet, and if its elevation is not 

lower than z, it is inserted in its corresponding queue; otherwise, if its ele-

vation is lower than z, the elevation is set to z and it is inserted into Q[z]. 

Notice that the latter case corresponds to flooding a depression point. 

The implementation described above supposes the terrain elevations are 

represented using integer values as is usual in SRTM data. However, it is 

possible to adapt the code to process the terrain if the elevation data is 

stored using another format. For example, if the elevation is stored using 

real values with precision of 10 centimeters and considering that the terrain 

elevations range from -424m to 8850m (the smallest and highest elevations 

on the Earth), it is possible to convert the data multiplying it by 10 and 

dropping its fractional component off. So, the data would require an array 

with (8850 - (-424)) x 10 = 92740 queues to be processed. Notice that, 

even if this array of queues is sparse, the space used to store the empty 
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queues is usually very small compared to the space required to store others 

data structures such as the terrain digital elevation matrix. 

 

 

Fig. 1. The flooding process, shown at 5 different water levels: (a) 70m, (b) 80m, 

(c) 99m, (d) 100m, (e) 105m. 

Furthermore, RWFlood automatically determines the flow direction of 

each cell during the flooding. When a cell c is processed, all the cells adja-

cent to c that are inserted in a queue have their flow direction set to c. That 

is, the water in the adjacent cells flows to the cell c (conceptually, the flow 

direction is set to the opposite direction as the water gets into the cells).  
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The algorithm in Figure 2 shows the pseudocode for RWFlood. First, it 

creates an array Q of queues with indices ranging from the minimum ele-

vation in the terrain boundary (minElev) to the maximum elevation in the 

terrain (maxElev). Then, cells in the terrain boundary are inserted into their 

corresponding queue and their directions are set to outside the terrain. 

 

 

Fig. 2. RWFlood algorithm – Fill depressions and compute flow directions 

After inserting the terrain border cells into the queues, the ocean level z 

is initialized with minElev and raised step by step to maxElev. Given a wa-

ter level z, the points in the queue Q[z] are processed (“flooded”).  The di-

rection is also used to check if a cell was not visited yet, that is, a flow di-

rection null means the cell was not visited. 

Figures 1(a), 1(b), 1(c), 1(d) and 1(e) illustrate the flooding process: in 

Figure 1(a) the water level is 70m (no depression was flooded yet). The 

Figure 1(b) shows the water level after some iterations (10 in the case); no-

tice the depressions in the center of the terrain are below the water level 

but they are not flooded yet because they aren't neighbors to the water. In 

Figure 1(c), the water level is 99m and the cells in queue Q[99]  are 

processed (only cells neighbors to the water were inserted in the queues). 
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In this process, the 100m cell elevation, in the rightmost peak, is inserted 

into the queue Q[100] and, when the water level is set to 100m, the cells in 

Q[100] are processed (Figure 1(d)). Thus, the depression is now neighbor 

to the water and cells' elevation in the depression are set to 100m. Figure 

1(e) shows the water level at 105m. 

After computing the flow direction, RWFlood uses an algorithm based 

on graph topological sorting to compute the accumulated flow. See algo-

rithm in Figure 3. Conceptually, the idea is to process the flow network as 

a graph where each terrain cell is a vertex and there is a directed edge con-

necting a cell c1 to a cell c2 if and only if c1 flows to c2. Initially, all vertic-

es in the graph have 1 unit of flow. Then, in each step, a cell c with in-

degree 0 is set as visited and its flow is added to next(c)'s flow where 

next(c) is the cell following c in the graph. After processing c, the edge 

connecting c to next(c) is removed (i.e., next(c)'s in-degree is decremented) 

and if the in-degree of next(c) becomes 0, next(c) is also similarly 

processed. 

 

 

Fig. 3. Algorithm to compute the flow accumulation 

As one can see, the proposed algorithm is very simple and its complexi-

ty is linear in the terrain size. Since, in the first step (flow direction compu-

tation) each terrain cell is inserted and removed from a queue exactly only 

one time and both are constant time operations. The second step (compu-
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ting the flow accumulation) is based on the topological sorting which is li-

near time too. 

3 Experimental analysis 

The proposed algorithm RWFlood was experimentally evaluated compar-

ing its execution time against other widely used methods such as ArcGIS 

version 9.0 and the methods Terraflow (Arge et al., 2003) and Watershed 

(Metz et al., 2011) included in GRASS GIS 6.4 as the modules r.terraflow 

and r.watershed. 

The r.watershed module is an efficient method for computing flow di-

rection and flow accumulation in terrains stored in internal memory. While 

the older versions of r.watershed were very slow for processing of large 

terrains (Arge et al., 2003; Danner et al., 2007), the version evaluated in 

this paper implements a fast flow computation algorithm proposed by 

Metz (Metz et al., 2011) which is, as far as we know, the fastest flow com-

putation method designed for internal memory processing. 

However, for huge terrains, the r.watershed module may need more 

memory than the available internally. Thus, the method needs to do exter-

nal memory processing and so, r.terraflow module may be more efficient 

than r.watershed since Terraflow is an I/O efficient (Arge et al., 2003) al-

gorithm designed to process huge terrains. Therefore, in the tests, both me-

thods included in GRASS (r.watershed and r.terraflow) were executed. 

As well as the processing time, the coherence of the flow network ob-

tained by RWFlood algorithm was also evaluated comparing it against the 

networks computed using GRASS. 

3.1 Performance tests 

The algorithm RWFlood was implemented in C++, compiled using g++ 

4.5.2, and several tests were done to evaluate its execution time.  All tests 

were executed in a Core 2 Duo machine with 2.8GHz and 4GB of memo-

ry. RWFlood, r.watershed and r.terraflow were executed in the Ubuntu Li-

nux 11.04 64bit Operating System, and ArcGIS in the Windows XP 32bit 

Operating System. 

We generated terrains with different dimensions using SRTM data 

representing some regions of the world - see Figures 4 and 5: 

 Tres Marias: a region in the Brazil, containing the Tres Marias Dam. 
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 Tapajos: a region in Brazil containing the Tapajos River, an important 

tributary of the Amazon River. 

 Region 2: SRTM USA region 2. 

Region 3: SRTM USA region 3. 

 

 
Fig. 4. USA SRTM regions. 

 

 

Fig. 5. Tapajos and Tres Marias Brazilian regions. 
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Table 3.1 and charts in Figures 6, 7, 8 and 9 show the four methods' 

processing time on those terrains. Notice that, in all tests, the RWFlood 

was much faster than all the other three methods and, in many cases, it was 

more than 100 times faster. 

 
Table 3.1. Processing time for different regions and terrain sizes. 

Terrain Size Processing time (in seconds) 

  [# cells] RWFlood r.watershed r.terraflow ArcGIS 

Tres Ma-

rias 

5000
2
 5 47 405 293 

10000
2
 14 233 2075 3860 

20000
2
 68 8776 9924 17509 

Tapajos 

5000
2
 3 48 401 376 

10000
2
 16 242 2059 2869 

20000
2
 73 9063 10015 13707 

Region 3 

5000
2
 5 44 411 219 

10000
2
 27 231 2106 1586 

20000
2
 125 9185 10140 7693 

30000
2
 1062 74135 24746 26338 

Region 2 

5000
2
 5 46 389 264 

10000
2
 27 246 2038 1449 

20000
2
 145 9374 9804 8546 

30000
2
 912 81195 24013 33829 

 

As expected, the internal memory processing (when possible) is more 

efficient than the external processing. In particular, considering the results 

presented in the figures, mainly Figures 8 and 9, all the internal memory 

methods were faster than r.terraflow for terrains having 20000
2
 cells or 

less. And, r.terraflow became more efficient than r.watershed and ArcGIS 

for terrains with about 20000
2
 and 25000

2
 cells respectively. However, 

even for terrains with 30000
2 
cells, r.terraflow was slower than RWFlood.  

Note that, although the RWFlood complexity is linear in the terrain size 

(as described in the section 2), the execution time presented in the Table 

3.1 seems to grow more than linearly with the terrain size, but this nonli-

near behavior can be explained mainly because of the random access to the 

terrain matrix since the access time to huge matrices cells depends on the 
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access pattern (sequential or not) and the memory hierarchy, in particular, 

the cache memory size. 

 

 

Fig. 6. Processing time graph of RWFlood, Watershed, Terraflow and ArcGIS ex-

ecuted in terrains from Tres Marias region. 

 

Fig. 7. Processing time graph of RWFlood, Watershed, Terraflow and ArcGIS ex-

ecuted in terrains from Tapajos region. 
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Fig. 8. Processing time graph of RWFlood, Watershed, Terraflow and ArcGIS ex-

ecuted in terrains from Region 3. 

 

Fig. 9. Processing time graph of RWFlood, Watershed, Terraflow and ArcGIS ex-

ecuted in terrains from Region 2. 

Of course, there comes a point when the terrain cannot be processed in 

the internal memory by RWFlood and so, the external memory methods 
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such as r.terraflow will be more efficient than it. Thus, to compare the per-

formance of RWFlood and r.terraflow in very huge terrains, more tests 

were executed considering pieces of the terrain in Region 2 with larger 

sizes. See Table 3.2 and Figure 10. 

 
Table 3.2. RWFlood and r.terraflow processing time  

considering larger terrain pieces from Region 2 

Terrain   Size Processing Time (sec.) 

  [# cells] RWFlood r.terraflow 

Region 2 

5000
2
 5 389 

10000
2
 27 2038 

15000
2
 72 5044 

20000
2
 145 9804 

25000
2
 288 15838 

30000
2
 912 24013 

35000
2
 2798 32123 

40000
2
 8872 44965 

45000
2
 18515 51290 

50000
2
 103572 66703 

 

 

Fig. 10. Processing time graph of RWFlood and Terraflow considering larger ter-

rain pieces from Region 2. 
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Notice that RWFlood was faster than r.terraflow for terrains with 2x10
9
 

(about 45000
2
) cells or less and its execution time became higher only for 

terrains having about 50000
2
 cells or more when the terrains need to be 

processed using the external memory.  This threshold is much larger than 

the terrain size for which r.watershed and ArcGIS became slower than 

r.terraflow. It happens because RWFlood was very carefully implemented 

to save memory and, thus, it can process huge terrains in internal memory. 

It doesn't use a priority queue, as many other methods, to organize the ter-

rain cells when removing the depressions. Instead, it uses an array of 

queues, one for each elevation, and so the cells can be processed in con-

stant time. Also, the flow direction is determined simultaneously to the de-

pression removal -- many other methods can only compute the flow direc-

tion after removing all depressions. And, the idea of raising water and 

flooding the cells makes the depression filling very fast and simple. Final-

ly, instead of creating a structure to store all the non-visited cells during 

the flooding step, the cell's flow direction attribute is used as a flag to indi-

cate if a cell was visited or not.  

Concluding, RWFlood was much faster than r.watershed (the current 

fastest internal memory method) and, also, RWFlood was able to process 

terrains much bigger than r.watershed did. Thus, besides being faster, 

RWFlood can postpone the point where methods designed for external 

memory processing are better than internal memory methods. For example, 

as the tests have shown, using 4GB of memory, RWFlood is more efficient 

than r.terraflow for terrains with up to 10
9 
cells and, as one can expect, this 

terrain size could be bigger using more internal memory. 

3.2 Comparing the flow networks 

The accuracy of the flow network obtained by RWFlood algorithm was al-

so evaluated. Figures 11, 12, 13 and 14 show the networks obtained by the 

methods RWFlood and GRASS (r.watershed)  in the Tapajos and Region 3 

terrains. Notice that, the two networks, in each terrain, are very similar 

with small differences mainly in flat areas what can be explained because 

the methods use different strategies to process flat areas. 
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Fig. 11. Network extracted by RWFlood in a terrain from Tapajos region. 

 

Fig. 12. Network extracted by GRASS in a terrain from Tapajos region. 
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Fig. 13. Network extracted by RWFlood in a terrain from Region 3. 

 

Fig. 14. Network extracted by GRASS in a terrain from Region 3. 
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4 Conclusions 

We presented a simple and very fast internal memory algorithm for com-

puting the flow network (that is, flow accumulation and flow direction) on 

terrains represented by an elevation matrix. The algorithm is linear in the 

terrain size and its processing time was compared against some other clas-

sic and recent methods included in GRASS (r.watershed and r.terraflow) 

and ArcGIS. As tests have shown, the proposed method was much faster 

(in some cases, more than 100 times) than the other methods. Also, it was 

able to process efficiently, in the internal memory, terrains larger than oth-

er internal memory methods did.  

    A next step is to adapt the flooding process based on raising the water 

level to compute other hydrological features such as the ridge lines and 

watershed. 

The RWFlood source code can be downloaded                                        

from www.dpi.ufv.br/~marcus/RWFlood. 
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