
A new method for computing the drainage

network based on raising the level of an ocean

surrounding the terrain

Salles V. G. Magalhães
1
, Marcus V. A. Andrade

1
, W. Randolph Franklin

2
,

and Guilherme C. Pena
1

1
Department of Informatics (DPI) - Univ. Fed. Viçosa, Viçosa, Brazil

{sallesviana, marcus.ufv, guipena}@gmail.com
2
ECSE - Rensselaer Polytechnic Institute, Troy, NY, USA

wrf@ecse.rpi.edu

Abstract

We present a new and faster internal memory method to compute the drai-

nage network, that is, the flow direction and accumulation on terrains

represented by raster elevation matrix. The main idea is to surround the

terrain by water (as an island) and then to raise the outside water level step

by step, with depressions filled when the water reaches their boundary.

This process avoids the very time-consuming depression filling step used

by most of the methods to compute flow routing, that is, the flow direction

and accumulated flow. The execution time of our method is very fast, and

linear in the terrain size. Tests have shown that our method can process

huge terrains more than 100 times faster than other recent methods.

1 Introduction

An important component of terrain analysis in geographic information sys-

tems (GIS) is the computation of hydrologic structures such as flow direc-

tion and accumulated flow. These structures are usually extracted from

mailto:guipena%7D@gmail.com

2 S. V. G. Magalhães, M. V. A. Andrade, W. R. Franklin, and G. C. Pena

digital elevation models (DEMs) stored as a matrix. The critical issues for

computing these elements are assigning directions over flat areas and

processing depressions. Traditionally, the depressions are removed by in-

creasing the cell's elevation to the minimal elevation of the cells on the de-

pression boundary. Then the flow over the flat area is directed to the low-

est cells on the flat area boundary. All that is very time-consuming. The

long execution time of those operations is more critical now because of

many huge terrains available covering broad regions with very high resolu-

tion, from STRM (SRTM 2011) and IFSARE (Jakowatz Jr. et al. 1996).

As described by Metz (Metz et al. 2011), even with recent significant

advances in flow routing algorithms, accurate extraction of drainage net-

works from DEMs remains challenging. The problems are the depressions

and flat areas arising during the DEM generation, from interpolation errors

or the limited spatial resolution used. Usually they arise because of the in-

terference during the elevation mapping and the majority of depressions

are spurious. Thus, they need to be removed before the flow routing com-

putation.

There are many methods for handling depressions and flat areas. Most

of them (O'Callaghan and Mark, 1984; Tarboton, 1997; Arge et al., 2003;

Danner et al., 2007; Zhu et al., 2006; Planchon and Darboux, 2002; Wang

and Liu, 2006; Yong-he et al., 2009) remove depressions by increasing the

cell's elevation to fill the sinks and then directing the flow over the flat

area to the lowest cells on the flat area boundary. Some others (Grimaldi et

al., 2007; Santini et al., 2009) after sink filling, force a flow direction by

creating a gradient in the flat areas.

Those strategies, which modify the elevation values to remove the de-

pressions, assume that they are artifacts introduced during the digital mod-

el generation. Recently, Metz (Metz et al., 2011), described an alternative

approach based on (Ehlschlaeger, 1989) to handle depressions using the

least cost drainage paths where the elevation values are not changed. This

method is implemented in GRASS (GRASS, 2011), an open source/free

general purpose geographical information system.

In this paper, we present a new and faster terrain flow computation me-

thod. The proposed method surrounds the terrain by water (as an island).

Then it raises the outside water level step by step, and fills the depressions

when the water reaches their boundary. The implementation execution

time of our method is very fast, and linear in the terrain size. It was tested

against some other methods, both classic and recent, such as ArcGIS and

GRASS modules r.watershed (Metz et al., 2011) and r.terraflow (Arge et

al., 2003). As the tests have shown, our method can process huge terrains

more than 100 times faster than existing methods.

A new method for computing the drainage network based on raising the level of
an ocean surrounding the terrain 3

2 The Proposed Algorithm

The basic idea of the proposed algorithm, named RWFlood, is to remove

the depressions by simulating the raising of an imaginary ocean that sur-

rounds the terrain. In this process the terrain is supposed to be an island

surrounded by water that is iteratively raised. When the water level in-

creases, it gradually floods the terrain cells and when it reaches a depres-

sion, the depression is filled by “water”. That is, in the beginning, the wa-

ter level is set to the elevation of the lowest cell in the terrain boundary,

which means that these lowest cells are flooded. Then all cells adjacent to

these flooded cells are stored for future processing. But, those cells that

are lower than the current water level are raised to the current level. See

Figure 1.

While similar to (Yong-he et al., 2009), RWFlood is much improved.

First, since the terrain elevations can be stored as 16-bit integers (Farr et

al., 2007; SRTM, 2011), it is possible to raise the water level in discrete

increments. That is, the water level is initialized to the lowest elevation in

the terrain boundary and, at each step, it is incremented by 1 until it reach-

es the highest terrain elevation.

Next, RWFlood uses an array Q of queues for the cells that need to be

stored for later processing. Q contains one queue for each elevation ---

queue Q[m] stores the cells (to be processed) with elevation m. Initially,

each cell in the terrain boundary is inserted into the corresponding queue.

Supposing the lowest cells have elevation k, the process starts at queue

Q[k] and, for each elevation z (water level) such that Q[z] is not empty, a

cell is removed (conceptually, it is flooded) and its neighbors are visited.

That is, given a neighboring cell v, if v has already been visited, it is done;

on the other hand, if v has not been visited yet, and if its elevation is not

lower than z, it is inserted in its corresponding queue; otherwise, if its ele-

vation is lower than z, the elevation is set to z and it is inserted into Q[z].

Notice that the latter case corresponds to flooding a depression point.

The implementation described above supposes the terrain elevations are

represented using integer values as is usual in SRTM data. However, it is

possible to adapt the code to process the terrain if the elevation data is

stored using another format. For example, if the elevation is stored using

real values with precision of 10 centimeters and considering that the terrain

elevations range from -424m to 8850m (the smallest and highest elevations

on the Earth), it is possible to convert the data multiplying it by 10 and

dropping its fractional component off. So, the data would require an array

with (8850 - (-424)) x 10 = 92740 queues to be processed. Notice that,

even if this array of queues is sparse, the space used to store the empty

4 S. V. G. Magalhães, M. V. A. Andrade, W. R. Franklin, and G. C. Pena

queues is usually very small compared to the space required to store others

data structures such as the terrain digital elevation matrix.

Fig. 1. The flooding process, shown at 5 different water levels: (a) 70m, (b) 80m,

(c) 99m, (d) 100m, (e) 105m.

Furthermore, RWFlood automatically determines the flow direction of

each cell during the flooding. When a cell c is processed, all the cells adja-

cent to c that are inserted in a queue have their flow direction set to c. That

is, the water in the adjacent cells flows to the cell c (conceptually, the flow

direction is set to the opposite direction as the water gets into the cells).

A new method for computing the drainage network based on raising the level of
an ocean surrounding the terrain 5

The algorithm in Figure 2 shows the pseudocode for RWFlood. First, it

creates an array Q of queues with indices ranging from the minimum ele-

vation in the terrain boundary (minElev) to the maximum elevation in the

terrain (maxElev). Then, cells in the terrain boundary are inserted into their

corresponding queue and their directions are set to outside the terrain.

Fig. 2. RWFlood algorithm – Fill depressions and compute flow directions

After inserting the terrain border cells into the queues, the ocean level z

is initialized with minElev and raised step by step to maxElev. Given a wa-

ter level z, the points in the queue Q[z] are processed (“flooded”). The di-

rection is also used to check if a cell was not visited yet, that is, a flow di-

rection null means the cell was not visited.

Figures 1(a), 1(b), 1(c), 1(d) and 1(e) illustrate the flooding process: in

Figure 1(a) the water level is 70m (no depression was flooded yet). The

Figure 1(b) shows the water level after some iterations (10 in the case); no-

tice the depressions in the center of the terrain are below the water level

but they are not flooded yet because they aren't neighbors to the water. In

Figure 1(c), the water level is 99m and the cells in queue Q[99] are

processed (only cells neighbors to the water were inserted in the queues).

6 S. V. G. Magalhães, M. V. A. Andrade, W. R. Franklin, and G. C. Pena

In this process, the 100m cell elevation, in the rightmost peak, is inserted

into the queue Q[100] and, when the water level is set to 100m, the cells in

Q[100] are processed (Figure 1(d)). Thus, the depression is now neighbor

to the water and cells' elevation in the depression are set to 100m. Figure

1(e) shows the water level at 105m.

After computing the flow direction, RWFlood uses an algorithm based

on graph topological sorting to compute the accumulated flow. See algo-

rithm in Figure 3. Conceptually, the idea is to process the flow network as

a graph where each terrain cell is a vertex and there is a directed edge con-

necting a cell c1 to a cell c2 if and only if c1 flows to c2. Initially, all vertic-

es in the graph have 1 unit of flow. Then, in each step, a cell c with in-

degree 0 is set as visited and its flow is added to next(c)'s flow where

next(c) is the cell following c in the graph. After processing c, the edge

connecting c to next(c) is removed (i.e., next(c)'s in-degree is decremented)

and if the in-degree of next(c) becomes 0, next(c) is also similarly

processed.

Fig. 3. Algorithm to compute the flow accumulation

As one can see, the proposed algorithm is very simple and its complexi-

ty is linear in the terrain size. Since, in the first step (flow direction compu-

tation) each terrain cell is inserted and removed from a queue exactly only

one time and both are constant time operations. The second step (compu-

A new method for computing the drainage network based on raising the level of
an ocean surrounding the terrain 7

ting the flow accumulation) is based on the topological sorting which is li-

near time too.

3 Experimental analysis

The proposed algorithm RWFlood was experimentally evaluated compar-

ing its execution time against other widely used methods such as ArcGIS

version 9.0 and the methods Terraflow (Arge et al., 2003) and Watershed

(Metz et al., 2011) included in GRASS GIS 6.4 as the modules r.terraflow

and r.watershed.

The r.watershed module is an efficient method for computing flow di-

rection and flow accumulation in terrains stored in internal memory. While

the older versions of r.watershed were very slow for processing of large

terrains (Arge et al., 2003; Danner et al., 2007), the version evaluated in

this paper implements a fast flow computation algorithm proposed by

Metz (Metz et al., 2011) which is, as far as we know, the fastest flow com-

putation method designed for internal memory processing.

However, for huge terrains, the r.watershed module may need more

memory than the available internally. Thus, the method needs to do exter-

nal memory processing and so, r.terraflow module may be more efficient

than r.watershed since Terraflow is an I/O efficient (Arge et al., 2003) al-

gorithm designed to process huge terrains. Therefore, in the tests, both me-

thods included in GRASS (r.watershed and r.terraflow) were executed.

As well as the processing time, the coherence of the flow network ob-

tained by RWFlood algorithm was also evaluated comparing it against the

networks computed using GRASS.

3.1 Performance tests

The algorithm RWFlood was implemented in C++, compiled using g++

4.5.2, and several tests were done to evaluate its execution time. All tests

were executed in a Core 2 Duo machine with 2.8GHz and 4GB of memo-

ry. RWFlood, r.watershed and r.terraflow were executed in the Ubuntu Li-

nux 11.04 64bit Operating System, and ArcGIS in the Windows XP 32bit

Operating System.

We generated terrains with different dimensions using SRTM data

representing some regions of the world - see Figures 4 and 5:

 Tres Marias: a region in the Brazil, containing the Tres Marias Dam.

8 S. V. G. Magalhães, M. V. A. Andrade, W. R. Franklin, and G. C. Pena

 Tapajos: a region in Brazil containing the Tapajos River, an important

tributary of the Amazon River.

 Region 2: SRTM USA region 2.

Region 3: SRTM USA region 3.

Fig. 4. USA SRTM regions.

Fig. 5. Tapajos and Tres Marias Brazilian regions.

A new method for computing the drainage network based on raising the level of
an ocean surrounding the terrain 9

Table 3.1 and charts in Figures 6, 7, 8 and 9 show the four methods'

processing time on those terrains. Notice that, in all tests, the RWFlood

was much faster than all the other three methods and, in many cases, it was

more than 100 times faster.

Table 3.1. Processing time for different regions and terrain sizes.

Terrain Size Processing time (in seconds)

 [# cells] RWFlood r.watershed r.terraflow ArcGIS

Tres Ma-

rias

5000
2
 5 47 405 293

10000
2
 14 233 2075 3860

20000
2
 68 8776 9924 17509

Tapajos

5000
2
 3 48 401 376

10000
2
 16 242 2059 2869

20000
2
 73 9063 10015 13707

Region 3

5000
2
 5 44 411 219

10000
2
 27 231 2106 1586

20000
2
 125 9185 10140 7693

30000
2
 1062 74135 24746 26338

Region 2

5000
2
 5 46 389 264

10000
2
 27 246 2038 1449

20000
2
 145 9374 9804 8546

30000
2
 912 81195 24013 33829

As expected, the internal memory processing (when possible) is more

efficient than the external processing. In particular, considering the results

presented in the figures, mainly Figures 8 and 9, all the internal memory

methods were faster than r.terraflow for terrains having 20000
2
 cells or

less. And, r.terraflow became more efficient than r.watershed and ArcGIS

for terrains with about 20000
2
 and 25000

2
 cells respectively. However,

even for terrains with 30000
2
cells, r.terraflow was slower than RWFlood.

Note that, although the RWFlood complexity is linear in the terrain size

(as described in the section 2), the execution time presented in the Table

3.1 seems to grow more than linearly with the terrain size, but this nonli-

near behavior can be explained mainly because of the random access to the

terrain matrix since the access time to huge matrices cells depends on the

10 S. V. G. Magalhães, M. V. A. Andrade, W. R. Franklin, and G. C. Pena

access pattern (sequential or not) and the memory hierarchy, in particular,

the cache memory size.

Fig. 6. Processing time graph of RWFlood, Watershed, Terraflow and ArcGIS ex-

ecuted in terrains from Tres Marias region.

Fig. 7. Processing time graph of RWFlood, Watershed, Terraflow and ArcGIS ex-

ecuted in terrains from Tapajos region.

A new method for computing the drainage network based on raising the level of
an ocean surrounding the terrain 11

Fig. 8. Processing time graph of RWFlood, Watershed, Terraflow and ArcGIS ex-

ecuted in terrains from Region 3.

Fig. 9. Processing time graph of RWFlood, Watershed, Terraflow and ArcGIS ex-

ecuted in terrains from Region 2.

Of course, there comes a point when the terrain cannot be processed in

the internal memory by RWFlood and so, the external memory methods

12 S. V. G. Magalhães, M. V. A. Andrade, W. R. Franklin, and G. C. Pena

such as r.terraflow will be more efficient than it. Thus, to compare the per-

formance of RWFlood and r.terraflow in very huge terrains, more tests

were executed considering pieces of the terrain in Region 2 with larger

sizes. See Table 3.2 and Figure 10.

Table 3.2. RWFlood and r.terraflow processing time

considering larger terrain pieces from Region 2

Terrain Size Processing Time (sec.)

 [# cells] RWFlood r.terraflow

Region 2

5000
2
 5 389

10000
2
 27 2038

15000
2
 72 5044

20000
2
 145 9804

25000
2
 288 15838

30000
2
 912 24013

35000
2
 2798 32123

40000
2
 8872 44965

45000
2
 18515 51290

50000
2
 103572 66703

Fig. 10. Processing time graph of RWFlood and Terraflow considering larger ter-

rain pieces from Region 2.

A new method for computing the drainage network based on raising the level of
an ocean surrounding the terrain 13

Notice that RWFlood was faster than r.terraflow for terrains with 2x10
9

(about 45000
2
) cells or less and its execution time became higher only for

terrains having about 50000
2
 cells or more when the terrains need to be

processed using the external memory. This threshold is much larger than

the terrain size for which r.watershed and ArcGIS became slower than

r.terraflow. It happens because RWFlood was very carefully implemented

to save memory and, thus, it can process huge terrains in internal memory.

It doesn't use a priority queue, as many other methods, to organize the ter-

rain cells when removing the depressions. Instead, it uses an array of

queues, one for each elevation, and so the cells can be processed in con-

stant time. Also, the flow direction is determined simultaneously to the de-

pression removal -- many other methods can only compute the flow direc-

tion after removing all depressions. And, the idea of raising water and

flooding the cells makes the depression filling very fast and simple. Final-

ly, instead of creating a structure to store all the non-visited cells during

the flooding step, the cell's flow direction attribute is used as a flag to indi-

cate if a cell was visited or not.

Concluding, RWFlood was much faster than r.watershed (the current

fastest internal memory method) and, also, RWFlood was able to process

terrains much bigger than r.watershed did. Thus, besides being faster,

RWFlood can postpone the point where methods designed for external

memory processing are better than internal memory methods. For example,

as the tests have shown, using 4GB of memory, RWFlood is more efficient

than r.terraflow for terrains with up to 10
9
cells and, as one can expect, this

terrain size could be bigger using more internal memory.

3.2 Comparing the flow networks

The accuracy of the flow network obtained by RWFlood algorithm was al-

so evaluated. Figures 11, 12, 13 and 14 show the networks obtained by the

methods RWFlood and GRASS (r.watershed) in the Tapajos and Region 3

terrains. Notice that, the two networks, in each terrain, are very similar

with small differences mainly in flat areas what can be explained because

the methods use different strategies to process flat areas.

14 S. V. G. Magalhães, M. V. A. Andrade, W. R. Franklin, and G. C. Pena

Fig. 11. Network extracted by RWFlood in a terrain from Tapajos region.

Fig. 12. Network extracted by GRASS in a terrain from Tapajos region.

A new method for computing the drainage network based on raising the level of
an ocean surrounding the terrain 15

Fig. 13. Network extracted by RWFlood in a terrain from Region 3.

Fig. 14. Network extracted by GRASS in a terrain from Region 3.

16 S. V. G. Magalhães, M. V. A. Andrade, W. R. Franklin, and G. C. Pena

4 Conclusions

We presented a simple and very fast internal memory algorithm for com-

puting the flow network (that is, flow accumulation and flow direction) on

terrains represented by an elevation matrix. The algorithm is linear in the

terrain size and its processing time was compared against some other clas-

sic and recent methods included in GRASS (r.watershed and r.terraflow)

and ArcGIS. As tests have shown, the proposed method was much faster

(in some cases, more than 100 times) than the other methods. Also, it was

able to process efficiently, in the internal memory, terrains larger than oth-

er internal memory methods did.

 A next step is to adapt the flooding process based on raising the water

level to compute other hydrological features such as the ridge lines and

watershed.

The RWFlood source code can be downloaded

from www.dpi.ufv.br/~marcus/RWFlood.

Acknowledments

This research was partially supported by FAPEMIG - The Minas Gerais

State Research Foundation, CAPES, CNPq - National Council for Scientif-

ic and Technological Development, Sydle, NSF grants CMMI-0835762

and IIS-1117277.

References

Arge, L., Chase, J.S., Halpin, P., Toma, L., Vitter, J.S., Urban, D., Wickreme-

singhe, R. (2003) Flow computation on massive grid terrains,

GEOINFORMATICA 7.

Danner, A., Agarwal, P.K., Yi, K., Arge, L. (2007) Terrastream: From elevation

data to watershed hierarchies, in: Proc. ACM Sympos. on Advances in Geo-

graphic Information Systems. , pp. 212-219.

Ehlschlaeger, C. (1989) Using the A* search algorithm to develop hydrologic

models from digital elevation data, in: International Geographic Information

Systems (IGIS) Symposium. (Baltimore, MD, 18-19 March 1989), pp. 275-

281.

Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick,

M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaer, S., Shimada, J., Uml-

and, J., Werner, M., Oskin, M., Burbank, D., Alsdorf, D. (2007) The Shuttle

Radar Topography Mission, Reviews of Geophysics 45 RG2004+.

A new method for computing the drainage network based on raising the level of
an ocean surrounding the terrain 17

GRASS (2011) Geographic Resources Analysis Support System (GRASS GIS)

Software. Open Source Geospatial Foundation, http://grass.osgeo.org (ac-

cessed 11/10/2011).

Grimaldi, S., Nardi, F., Benedetto, F.D., Istanbulluoglu, E., Bras, R.L. (2007) A

physically-based method for removing pits in digital elevation models, Ad-

vances in Water Resources 30, pp. 2151-2158.

Jakowatz Jr.., C.V., Wahl, D.E., Eichel, P.H., Ghiglia, D.C., Thompson, P.A.

(1996) Spotlight-Mode Synthetic Aperature Radar: A Signal Processing Ap-

proach, Kluwer Academic Publishers, Boston, Massachusetts.

Metz, M., Mitasova, H., Harmon, R.S. (2011) Efficient extraction of drainage

networks from massive, radar-based elevation models with least cost path

search, Hydrology and Earth System Sciences 15, pp. 667-678.

O'Callaghan, J.F., Mark, D.M. (1984) The extraction of drainage networks from

digital elevation data, Computer Vision, Graphics, and Image Processing 28,

pp. 323-344.

Planchon, O., Darboux, F. (2002) A fast, simple and versatile algorithm to fill the

depressions of digital elevation models, Catena 46, pp. 159-176.

Santini, M., Grimaldi, S., Nardi, F., Petroselli, A., Rulli, M.C. (2009) Pre-

processing algorithms and landslide modelling on remotely sensed dems,

Geomorphology 113, pp. 110-125.

SRTM (2011) SRTM Topography Documentation,

http://dds.cr.usgs.gov/srtm/version2 1/Documentation/ (accessed 11/10/2011).

Tarboton, D.G. (1997) A new method for the determination of flow directions and

upslope areas in grid digital elevation models, Water Resources Research 33,

pp. 309-319.

Wang, L., Liu, H. (2006) An efficient method for identifying and filling surface

depressions in digital elevation models for hydrologic analysis and modelling,

International Journal of Geographical Information Science 20, pp. 193-213.

Yong-he, L., Wan-Chang, Z., Jing-Wen, X. (2009) Another fast and simple dem

depression-filling algorithm based on priority queue structure, Atmospheric

and Oceanic Science Letters 2.

Zhu, Q., Tian, Y., Zhao, J. (2006) An efficient depression processing algorithm for

hydrologic analysis, Comput. Geosci. 32, pp. 615-623.

