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ABSTRACT: Fragmentary river segments have to be reconnected before addressing various rout-
ing and tracking problems. Elevation determines drainage directions, so the partial heights available
through LiDAR may provide useful hints on how the segments should be joined. However, it is not
trivial how this information can be applied. This paper bridges this gap by proposing the induced
structure approach, which first approximates a terrain compatible with those observations, and then
derives a river network from that induced terrain. Since the network is derived from an induced ter-
rain that honors the partial observations, we expect that the derived river network will enforce most
restrictions imposed by the partial observations. This paper also provides specifics on the implemen-
tation. In the first step regarding terrain reconstruction, we find that the optimal scheme depends on
the height sample distribution. If the samples are sparsely yet evenly distributed, natural neighbor
interpolation with stream burning (NN-SB) is the most cost-effective. If' the samples are offered
only at the given river locations, the hydrologv-aware version of Over determined Palladian Partial
Differental Equation (HA-ODETLAP) should be used instead. In the second step concerning river
derivation, we find it necessary to favor those given river locations. Otherwise they will be missed out.
We set their respective initial water amounts to the critical accumulation level to ensure a river flows
across them. In the subsequent branch thinning process, those locations are protected from being
trimmed. We foresee applications of our solution framework in a few 2D and 3D network tracing

problems with similar observation distribution, like dendrite network reconstruction.
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Introduction

nowledge of complete river networks is

essential to a number of geographical and

environmental applications, like designing
shortest routes for ships, locating forthcoming aftected
areas of flooding and pollutant leaks, and idenufying
possible migrations of aquatic organisms. However,
that information is usually not immediately available
with conventional airborne surveving techniques like
standard photogrammetric and mulu/hyper-spectral
imaging. Clouds and tree canopies often occlude
parts of the river network (Asante and Maidment
1999), leaving us disconnected river segments. We
may perform ground surveys as supplements, but
they are much more costly. Worse stll, sometimes we
cannot afford the long time they take, or we simply
cannot do them due to harsh ground conditions, as
in emergency surveys during or immediately after
natural disasters lke earthquakes, hurricanes and
flooding. This leads to a need to connect the broken
segments together to form a complete river network.
That complete river network usually consists ol a
number of tree branching structures. Every nver
location 1s expected to have a single way lor the
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water to flow out to a terrain edge or a sink within
the terrain (Asante and Maidment 1999; Arge et. al.
2003a). The width of the river branches may be large,
but very often we aim at the respective “central lines”
where water accumulation 1s a maximum among its
immediate neighbors except the one towards which
its water flows,

Intuitively, i’ we have the fragmentary river
observations only but not anything else, the best thing
that we can do is to join the segments together as if
they are typical line pieces (Asante and Maidment
1999). If' the gaps are as small as a few pixels wide,
we may use the dilatton morphological operation
to extend the line pieces gradually untl their ends
meet (Noble 1996). When we want to conserve the
collinearity ol the segments, the Hough transtorm
(Hough 1962) provides a voting process to make
sure that only collinear pixels can be extended. For
curves ol arbitrary shapes, we may adopt a more
complicated technique like the axis-oriented linking
(Zhang 2000). Note that they are all assuming line
behaviors that we generalize from typical niver
segments, like shortest routes and segment curvature
preservation, in the reconnection process. However, if
we also know the set of ground elevations in addition,
we may eliminate any possibihties that violate the
height constraint, namely that water flows from a
higher location to a lower location. This potentially
improves the realism of the reconnection results, as
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we are using informaton that directly aflects dramnage.

As a cnucal example, suppose that a hill is sitting in
between two river segments. Then even though the
end points of these two segments are very close, it is
highly likely that the flow from one segment does not
go o the other one.

To date, Light Detection and Ranging (LIDAR)
provides the most promising survey results on
ground elevations. It works by emitting laser pulse
energy from a plane travelling across a terrain and
collecting the backscatters from the ground. The
ume elapse between a laser pulse emission and the
return ol the corresponding backscatter tells the

distance between the ground and the plane. Together

with a georeferenced record on where those pulses
are emitted, we can derive the elevation field

the terrain. However, cloud and canopy covers
continue to be the major obstacles. The laser cannot
pass through the clouds (National Oceanic and

Atmospheric Admimstranon Coastal Services Center

2008). Tor canopies, LIDAR may “see through™ the
forest as long as we can detect suthcient backscatters
ol the small footprint laser pulses that propagate
through small canopy openings to the ground. If” we
fail, we may overesimate the ground heights as we
identify no data points that are from the ground, or we
mistreat the reflections from an above-ground object
as true ground backscatters. The crniucal coverage
extent that still allows enough reflections depends on
vegetation type. For instance, in a recent extensive
ground survey on a closed-canopy forest in Oregon, it
is found that once the canopy cover is over 60%, the
ground height estimation degrades quickly. At areas
with 90% canopy coverage, the error can be as high
as 4 meters for conifers and 3 meters for hardwood
during leaf-on seasons (Gatziolis et. al. 2010). These

errors can be critical if we are working with a flat area,

in which a small noise in the elevation grid can alter
the drainage directions and hence impact the resulting
derived river network significantly. To obtain reliable
ground data of the forest, it 1s advised to survey in a

clear winter mght, when clouds are as few as possible,

and the leaf-off’ conditions of the trees could provide
more holes in between the « “E’:I.I'I{][}il"'-‘. for the laser
pulses to penetrate (UK Forest Commission 2010,

In summary, the additional elevation data is also
likely to be unreliable for some parts of the terrain
and hence incomplete. We idenufy the following two
possible sample height distributions:

Case 1. Vegetation cover is not that dense overall (as
in typical forest areas). We end up with sparsely and
evenly distributed height samples.

Case 2. Vegetation cover 1s so dense that there is no
way for the laser beam to penetrate all the way to
the ground. We end up with height values at only the
observed nver locations where trees cannot grow to
block the view of both airborne hydrology and height
surveys,

This article aims to introduce a novel conceptual
framework for the challenging river segment
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Figure 1. Workflow of the induced structure approach of
river network reconstruction.

reconnection problem under the partal height
constramt. We call 1t the induced structure approach.
[ts workflow 1s illustrated in Figure 1. The approach
incorporates height data by first approximating
a structure (a terrain surface in this case) that is
compatible with both parual height and river
locations information, and then deriving the river
network underlying the induced terrain. Since the
network is derived from an induced terrain that
honors the partial observations, we expect that the
derived river network will enforce most restrictions
imposed by the partial observations, including the
drainage restrictions imposed by the known heights
and an exact match of the river locations against the
given information. Note that the two steps defined
above have been well studied for decades. This means
existing well-established algorithms may be applied.
What we need to do 1s to find out the best one, and
modify them to adapt to the specific situations we
have here.

In this article we will first go through a few
concepts related to our discussion, including problem
formulation, terrain reconstruction, hyvdrological
correction, river network derivation, and sample
datasets. Next we will discuss the first step of
the approach, and suggest the best strategies for
reconstructing legal terrains under the sample height
distributions identified above, We may fail to identify
some already given partial river locations il the
induced terrain in the previous step is passed to a
conventional river derivation algorithm. To eliminate
such failures, we privilege those locations throughout
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the subsequent river derivation process and provide
details of this process. We conclude with suggestions
for future research.

Related Concepts

Problem Formulation
[n this river segment reconnection problem, the
primary data is a square grid of resolution # X n
eridding the terrain in concern. Each of these n~ cells
has a binary value indicating if it 1s on a river. We have
the reconnection problem because we fail to survey a
few cells due to dense cloud and tree canopy covers.
Some of these cells may be river locations, but we do
not flag them as so in that binary data grid. Our task
is to find out those cells and flag them back to river
locations, so as to obtain the complete river network.
Asdiscussed before, we have also the digital elevaton
model (DEM), which is the digital representation of
the terrain height values. We can always assign it the
same resolution as the previous binary grid. Again,
this grid may not be completely filled due to dense
cloud and canopy covers.

Terrain Reconstruction

If the full DEM grid had been available, the
corresponding complete river network would have
been readily derivable using a river dervation
algorithm as discussed in the subsequent Riwver Derivation
section of this article. However, holes are now there
in the elevation grid. We have to complete the missing
values by a terrain reconstruction algorithm before
proceeding to the subsequent hydrological correction
and river derivation because both processes work only
with a complete elevation grid.

Nearly all terrain reconstruction algorithms follow
this first law of geography: everything 1s related to
everything else, but near things are more related than
distant things (Tobler 1970). Essentally they set the
clevation of an unknown position (4, jl, z , to be a
weighted average of known elevations /i, where { = 1,
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Proximity polygon (or Voronoi polygon or nearest
point) sets z  to its nearest known neighbor, which
means w, = | for the nearest known position but
Mia™ 0 for all the others (Thiessen 1911). Because
the one neighbor to use for elevation estimation has
been clearly defined, it requires no parameters and 1s
therefore simple. However, the surface so generated
is blocky because the value used as the interpolated
height changes abruptly when crossing the Voronoi
boundaries of the known elevations.

Incorporating muluple known heights 1 the
calculation allows their influences to transit smoothly
across the terrain, and is a way to improve the surface
realism. Inverse distance weighting (IDW) sets w

, to the inverse power of distance between (1, ;) and
the known position /, usually square {Shepard 1968).
Kriging is a geostatistical approach in which all control
point data are involved in finding optimal values
ol the general weighting function w(s) for a known
point distant s from the unknown position. The main
assumption here is that the covariance between two
elevations depends solely on the distance between
the positions (Krige 1951). However, we often have
problems optimizing the number of points to use.
We would prefer a scheme that takes multiple known
heights vet requires no parameter iput.

Natural neighbor interpolation (NN) (Sithson 1981)
is a representative example of such a scheme. The
set of neighboring known heights together with their
respective weights are well-governed by Voronoi
diagrams. Figure 2, which is adopted from Wikipedia
(Wikipedia 2010), illustrates this method. The black
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Figure 2. Natural neighbor interpolation.

dots are the locations of the given height samples. The
process starts with constructing a Voronoi diagram
with these height samples. (The thick solid lines
are the boundanes of the Voronoi polygons.) For a
unknown-height location p (indicated with a triangle),
we identify the corresponding closest subset by first
adding p to the Voronoi diagram formed previously,
and then find the set of points with their respective
original Voronoi polyvgons overlapping with the
Voronoi polygon of p. The interpolated value of p is
then the weighted sum of the height values at these
closest height samples, with weights proportional to
the overlapped area of the Voronoi polygons.

Another parameter-less method involves fitting
splines in between the known heights. With this
approach, first-order and even second-order
continuity are explicitly enforced; thereby ensuring
that the slope of the surface 1s smooth.

In all the approaches described above, we take the
measured elevation values as is for the reconstructed
surface, also known as interpolation. However, in
most cases such interpolation of the known points is
not necessary because of measurement imprecision.
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Approximaton, which allows relaxaton from the
measured values, allows much more desirable overall
reconstruction results and much smoother surfaces.
Trend surface analysis 1s a classic technique used
for surface approximation. It involves specifying
a general form of a mathematical funcuon at the
beginning. This 1s the trend which 1s expected to
represent a large-scale systematic change that extends
from one map edge to the other. Then we fit the
function with the sample data aiming least squares,
a process also known as regression. A review of the
technique can be found from Wren (1973). However,
to model complicated surtaces, we should accompany
this approach with some other techniques.
Overdetermined Laplacian FPartial Differential  Equation
(ODETLAP) (Gousie and Franklin 1998; Gousie
and Frankhn 2005; Xie et. al. 2007) sets up an
overdetermined system Az = b, as shown in Figure
3, 1o solve for the elevations of the whole terrain grid
z. The system includes an exact equation for each
known-height positon. That equation sets the height
value ol the respective position to its known value.
The system also contains an averaging equation for
every position. The equation attempts to regularize
the respective height to the average of 1ts immediate
four neighbors. Through adjusting the weight R of
the set of exact equations over the set of averaging
equations, we obtain terrain surfaces with the desired
accuracy-smoothness tradeofl. It can work with
contour lines (continuous or intermittently broken),
infer mountamn tops mnside a ring of contours, and
enforce continuity ol slope across contours, All these
are favorable features of natural-looking terrains.
The time complexity of ODETLAP is O(r’+£). In
practice, we transform the system to A'Az = A'b

before solving for z. In this equivalent system A'z =

where = : = . 1S SV 1r1C
b' where A' = ATA and b' = ATb, A' is symmetric
positive definite. We can then take advantage of the
tast Cholesky factorization to keep the actual solving
time to within seconds even lor large datasets (L1

2010).

Hydrological Correction Schemes

All  the above general terrain reconstruction
techniques work primarily with partial height
orids. To incorporate the known nver locatons
the induced terrain, a few hvdrological correction
schemes have been developed. These schemes are
originally intended for full DEMs accompanied
with the respective full river networks. They all aim
to improve the ability of the DEMs mn rephicating
hydrological patterns, especially n flat landscapes n
which noise in heights can harm the river implied by
the terrain drastically. The common tactic of many
such correction schemes 1s to sink the elevanons of
the identified river locations. The simplest 1s to trench
only those river locations by a certain trench amount,
a process commonly known as stream burning
(Hutchinson 1989). We expect the lowered positions
are more likely to see water stop there, thus increasing

theiwr chance ol becoming rver locatons. Indeed this
matches with our expectation on the height ol a nver
location relative to the corresponding riverbank. Some
algorithms suggest sinking the neighborhoods as well,
but they require more parameter inputs. For instance,
in AGREE (Hellweger 1997) which 1s available as a
script iIn ArcGIS Arc Macro Language (AML) format,
we need to decide the sink width w. We trench the
river locations and their neighborhoods by different
amounts (sharpdist and smoothdist respectively).

The remaining schemes  bundle  terramn
reconstruction and hvdrology adaptation together
as integrated hydrology-aware terrain construction
algorithms. The best known is ANUDEM (Hutchinson
1989), in which iterative finite difference interpolation
is interleaved with the dramnage enforcement
algorithm. The enforcement algorithm creates not
only valleys at the river locations but also chamns of
decreasing elevations along the flow pathways to guide
the water flow. Even without the stream network, the
routine can still infer drainage lines via flow directions
or even just partial elevatons (through an analysis
ol gnd pomts and saddle points). This practice
potentally gives better terrain reconstruction results.
However, this also means we need to recompute the
whole elevation grid when data are updated, because
now there i1s a tught topological relationship between
consecutive locations along the river.

River Network Derivation

To derive the underlying river network ol a complete
elevatuon grid, we use a river derivation algorithm
like r.watershed which is a routine in GRASS
GIS (Ehlschlaeger 2008), or TERRAFLOW (Arge et.
al.,2003a) which 1s available as a standalone program
(Toma 2002), a routine called r.terraflow in
GRASS GIS (Arge et. al. 2002) and an extension for
ArcGIS (Arge et. al. 2003b). In such an algorithm,
we first compute the drainage directions of the cells.
Then based on those draimage directions and the
initial water amounts assigned to the cells, we evaluate
the total amount of water passing through each cell.
Finally, the river network compatible with the terrain
can be extracted by excluding those positions with
accumulation less than a certain threshold.

These different schemes differ in the way they
compute drainage directions. For example, in the
large-dataset-optimized TERRAFLOW, we rely on
typical single-flow direction approaches like the D-8
algorithm (or its 4-neighbor version D-4) in which
water 1s directed to the lowest deeper immediate
neighbor (O’Callaghan and Mark 1984), or multiple
flow direction schemes 1 which water 1s allowed
to flow to multiple neighbors as long as they are
deeper. In either case, we need to remove the false
local depressions due to noise before computing
the drainage directions. Otherwise, water in those
depressions cannot be routed to the terrain edges as
desired. Common approaches for this task include
median filtering (which 1s well-known 1n image

I
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Figure 4. Elevation plots of the six test 400x400 DEMs: hill1, hill2 (first row), hill3, mtn1 (second row), mtn2, mtn3

(third row).
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[1'"“‘1“‘5-‘*“}?3} literature lor  Table 1. Information about the six test 400x400 DEMs.

suppressing one-cell sinks) :

and flooding (Arge et. al. Elevation (m)

2003a)  (which  mimics BEM Ceall:Name Coll Range Mean Standard Range

the natural way to assign Deviation

uphill ~ flow  directions hill1 W111N31 401:800, 1:400 1251 79 1105:1610
1o 1\”’”““& water out ol a hill2 W111N31 | 401:800, 401:800 | 1548 134 1198:1943
W AL REESERRG B hill3 W111N31 | 401:800, 801:1200 | 1309 59 1199:1699
r.watershed which

uses a least-cost search mtn1 W121N38 1201:1600, 712 146 219:1040
algorithm.  With  this 12011600

alg{]ri[hn'l_ lht‘ (]]‘aj[]agp ol a mtn W121N38 ZEU3EUU, 847 152 330:1283
cell 1s not determined unul 801:1200

its downstream location has mtn3 W121N38 3201:3600, 723 161 233:1021
been decided, so false pits 401:800

will not cause drainage flow

pointers to go askew. [his

implies that the single water flow direction can be to
some other deeper neighbor which may not be the
lowest (Ehlschlaeger 1989). This approach is reported
to produce more accurate results in areas of low
slope as well as DEMs constructed with techniques
that mistake canopy tops as the ground elevaton
Ehlschlaeger 2008).

The one-cell thick and no-loop constraints, 1f
needed, can be enforced by a thinning algorithm
(Lam et. al 1992) afterwards. The process successively
removes pixels at the outer layers of the object,
while retaining any pixel whose removal would alter
the connectivity or shorten the legs of the skeleton
(Jang and Chin 1990). A typical thinning result
should be unbiased: the kept pixels are located at the
geographical center of the object.

Sample Datasets

In the following discussion, we are using the six 400
x 400 full DEMs shown in Figure 4. Those DEMs
are extracted from two SRTM DTED Level 2 cells,
with details given in Table 1 and Figure 5. We start
with complete elevation data because we need the
complete and accurate ground truth river networks

20001
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Figure 5. The box plots on the elevations of the six test
400x400 DEMs. For each dataset, the red horizontal bar
inside the box indicates the median. The lower and upper
sides of each boxes show the 25th and 75th percentiles.
The horizontal lines at the lower and upper ends highlight
the minimum and maximum.

for comparison with the reconnection results. Real
partial observations rely on humans to complete the
missing parts which may means errors.

To obtain the ground-truth river networks, we run
r .watershed with accumulation cutofl” threshold

= 200, initial water amount at each location = |

over these six DEMs. We pick r.watershed due
to its speed and accuracy over TERRAFLOW. We
arbitrarily choose to obtain four-connected river
networks.

We sample for observed river locations as follows:
first we divide the whole grid into 20 X 20 subgrids. In
each subgrid, we randomly pick a point and mask an
area of 12 X 12 around it. It is to mimic the occlusions
by clouds in real aerial photos. For elevation grid, we
hide around 90% of the height values in the elevaton
grid to simulate the even vet moderate occlusions by
clouds and canopies in case 1. For case 2, we hide
the heights at all locations except those at the given
river locations in order to emulate the eflect of severe
ground vegetation covers.

Hydrological-corrected Terrain
econstruction

The first step of the induced structure approach
is to derive a terrain compatible with the parnal
observations. Asseenin the previous section, a plethora
of terrain reconstruction and hydrological correction
schemes is around. What we need to do is to identify
the one scheme that works the best with the particular
partial observations that we have. We find that the
choice depends heavily on how the height samples are
distributed. In the following, we will go through the
two possible height distributions identified at the start
of this article, and justify the respective hydrological-
corrected terrain reconstruction schemes that we
have chosen.

Evaluation Criteria

To evaluate the various schemes, we pass the partial
heights and river locations to various hydrological-
corrected terrain reconstruction algorithms to
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generate the respective induced terrains, from which
we derive the respective river networks using the
biased river derivation scheme.

Accuracy is, as always, an important concern when
making the decision. In this case, it is evaluated in
terms of how well the derived river network links the
river segments and classifies the locations as river/
non-river. For the former criterion, we provide the
plots of the reconstructed networks together with
the original one for visual comparison. For the latter.
we compute the rates that the reconstructed terrains
correctly classity a location as a river/non-river site.

When accuracies are similar, we will turn 1o
efhciency. This implies that we should aim at a scheme
that has the smallest number of effective parameters
(preferably none at all. This is because to compute
the new river network of the updated terrain, we have
to work with the whole completed elevation gnd, as
a river originating at a location can reach virtually
any location in the grid no matter how far away it
15. Therefore, unless we have a universal parameter
setting that is highly likely to yield satisfactory results,
we need to go through the global river derivation
operation again and again to find out the optimal
parameter values, which time and resources may not
allow. The errors consist of false positives and false
negatives. A false positive occurs when a location has
no river flow but 1s misidentified as a river location. A
false negative happens when the river does flow across
the location, but the location 1s misidentified as a non-
river location in the reconstructed network.

Case 1: Heights Sparsely Yet Fuenly Distributed Across the
Terrain
We start working on this case by trying numerous

possible combinations of terrain reconstruction and
hydrological correction schemes. Table 2 describes
those combinations in detail.

The full and the given river networks o’ mtnl are
given in Figure 6. Figure 7 shows the reconnections
with different algorithms. Indeed, it is hard to tell from
the figures which scheme is better. First, the results
do not show anv obvious artifacts. Second, each
approach features its own set of correct reconnections.

Table 3. Case 1 - River/Non-river classification errors with
respect to all locations of different algorithms. Inside each
cell is the classification error, in percentage of cells being
misidentified. The parameters needed for the optimal
results are in parentheses.

DEM | NN-SB | SF-SB | OS-SB | NN-AGREE | ANUDEM
hit1 | 194 | 238 | Q70 2% 4.17
hillz | 2.14 2.17 {;‘jz} {i::;} 3.76
i3 | 309 | ase | 48[ 22 6.45
mtnt | 248 | 288 | oo0 40 3.82
mn2 | 242 | 253 | o0 22 3.43

For example, while ANUDEM correctly reconnects
the river segments as highlighted by the circle in
the middle, it fails for those surrounded by another
circle on the right. This means we should turn to the
remaining evaluation criteria, namely river/non-river
classification errors (shown in Table 3) and efficiency.

Among all the general terrain reconstruction

Table 2. Case 1 - Various hydrological corrected reconstruction schemes being tested.

Scheme Terrain Hydrological e
Reconstruction Correction
NN-5B MNatural Neighbor ?ttrr::gin'll Eu;g;ng Our recommended scheme. Trench amount is arbitrary set.
: Reference. It is to investigate if some other parameter-less general
Second-order Stream Burning . ; : :
SF-SB Spline Fitting (trench = 30) terrain reconstruction scheme (Second-order spline fitting) performs
better.
Reference. It is to see how much better a more sophisticated
: general terrain reconstruction scheme (ODETLAP) can perform. We
0S-SB {?:EELLEFR} ?ttrr::;;t Eu?:'g;ng vary R from among 1, 2, 5, 10 and 20, and pick the setting that
leads to the smallest false negative with respective to the given
river locations.
Reference. It is to check how better a more complicated
AGREE : :
(sharpdist = 30 hydrological correction scheme can perform. We vary w from among
NN-AGREE | Natural Neighbor smnnri::}hdist ) 3;} 1 (which is equivalent to stream burning), 2, 5 and 10, and pick the
. ' | one that gives smallest false negative with respective to the given
optimal w) , ;
river locations.
Reference. It is to examine whether that existing integrated
algorithm that is originally designed for use with full river
ANUDEM Finite-difference Drainage networks also works well with partial river segments. We use the
Interpolation Enforcement implementation named TOPOGRID in ARCGIS 9.3. To compare fairly
with NN-S5B which requires virtually no adjustment of parameters,
we do not alter any of its default parameter settings.
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Figure 7. Case 1 - The full river network (top left). Reconstructed river
networks with different algorithms, NN-SB (top right), SF-SB (middle left),
0S-SB (middle right), NN-AGREE (bottom left), ANUDEM (bottom right).
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algorithms, natural neighbor
interpolation is the only known

algorithm to-date that offers reasonably
delicate results without any supply of
parameter: when comparing within
the virtually parameter-less schemes,
NN-SB consistently presents smaller
errors than SF-SB. This means natural
neighbor picks neighbors and sets
respective weights better than spline
fitting; when compared with OS-SB
which requires parameter inputs, NN-
SB occasionally performs a little bit
more poorly. This is not surprising
as ODETLAP which reconstructs
terrain for OS-SB is known to have a
few advantages in building natural-
looking terrains. However, the expense
is that we have to run the global river
derivation algorithms again and again
for the optimal parameter settings, as
there 1s no one-size-fit-all parameter
value for different datasets (note the
different optimal R values for different
DEMs in Table 2). Considering that
accuracy improvement is usually within
| percentage point, we recommend the
more eflicient natural neighbor.

For the hydrological correction strategy,
we adopt stream burning over the more
complicated AGREE. The arguments
are similar to that for natural neighbor
over ODETLAP: first, even though
stream burning takes trench amount
as the only parameter, the strategy is
virtually parameter-less. Its effect is
there as long as the amount 1s large
enough. Further fine-tuning on the
parameter does not change the result
much (Callow et. al. 2007). In contrast,
we need to adjust sink width w for
AGREE (note the different optimal w
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value 1n for different DEMSs in Table 2): second.
we gain at most 1 percentage point in accuracy,
if there is any (compare the errors of NN-SB
with NN-AGREE in Table 2). Indeed, setting w
= 1 (which 1s equivalent to NN-SB) sometimes
offers superior results (See Ailll and /ll3). All
these justify our choice on the more cost-efficient
stream burning.

The integrated hydrology-aware terrain
reconstruction algorithm ANUDEM does not |
perform equally well as NN-SB. We suspect |

W =

! by & equations, each equates
I - h’ the reconstructed height of a
" :  known-height position to tha
12 i respective measured value
I : h, z,=h

f w equations, each equates

0 the reconstructed height of a
river position to its deflated

0 neighborhood average, its

0 normal neighborhood

0

average otherwise.
= r’:j_l_jzw R i I ‘fJ.-“Jf

= 1 for nver locations,

T ! f=1 otherwise)
]
A z b

the reason 1s that the topological relatonship
buildup that it features to improve accuracy
does not work well with broken river segments.

Case 2: Height available at given river locations only

We once again try all the possible (terrain
reconstruction, hydrological correction) combinations
as 1n case 1 to look for the best one. In this case, we find
that the hydrology-aware variant of Overdetermined
Laplacian  Partial Differential Equation (HA-
ODETLAP) gives the most accurate river/non-river
classification, especially at the tributaries. These
locations are where other conventional schemes
depend heavily on given height samples to infer
ridges and valleys crucial to correct water distribution
and river formation.

Recall the key idea of a hvdrological corrected
terrain reconstruction scheme is to model river
locations as local minima with respect to surrounding
non-river locations. To realize this idea in HA-
ODETLAP, we modify the averaging equation at
each known river location: we regularize its height

i Yo, Y2 01250
- ~d
of ‘1.
10
10
10
10 10 10 10
10

Y

Figure 8. A toy example illustrating the effect of HA-
ODETLAP. Known river locations with respective heights
(top). Terrain reconstructed using basic ODETLAP (bottom
left). Terrain reconstructed using HA-ODETLAP with f = 1.04
(bottom right).

Figure 9. HA-ODETLAP,

to a value smaller than the respective neighborhood
average.

I[f we assume that the slope of the river bank is
approximately the same throughout the whole terrain
las i flat basins), we deduct those neighborhood
averages by the same amount d (Muckell 2008).

<io1 + +E'.J_| L

4f

Otherwise, it is more appropriate to deflate the average
more at higher elevations. It is because youthful river
channels, which are usually located at high elevations
and also the beginning of a river, have steeper slopes
than the mature and old age counterparts at lower
elevations (GeolTeach.com 2008).
The f above 1s the average deflation factor: if we
increase its value from 1, the value imposed to
2, by this averaging equation decreases from the
neighborhood average. With sufficiently large
that value will be smaller than any of its non-river
immediate neighbors. The computed surface will
then have a local minimum at that location. Figure
8 llustrates how HA-ODETLAP makes a difference.
The regularization part of ODETLAP attempts to
set the height value of every cell to the average of
its immediate four neighbors. Therefore, when it is
confronted with an incomplete height grid in which
all the given elevations are of the same (10 in this
case), that single elevatuon value is propagated to all
the unknown height cells, resulting in an undesirable
flat surface. In contrast, with HA-ODETLAP under f
> 1, the regularization equation at each known-height
river location models the location as a local minimum
instead, resulting in the desirable “V” shape there,

Figure 9 summarizes the overall system of our
hydrology-aware extension. When compared with
Figure 3, one can see that we only change the values
of some non-zero entries in the A matrix. Zero
locations in the original system remain zeros. The
sparsity structure of the A matrix is preserved. Thus
the modified system can be solved within a time
similar to the original system.

As n the original system, the accuracy-smoothness
parameter R determines the trade-off between
smoothness of the reconstructed terrain and

ol
“i+l f

i, g+l

ta
I
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Table 4. Case 2 - River/Non-river classification errors of
HA-ODETLAP under different average deflation factors
f, together with NN-SB (trench = 30). Inside each cell
is the classification error, in percentage of cells being
misidentified.

HA-ODETLAP with f
DEM NN-SB
1.00 | 1.01 | 1.02 | 1.03 | 1.04
hill1 6.15 | 2.60 | 2.67 | 2.73 | 2.72 3.18
hill2 6.75 | 2.#1 2.51 | 2.56 | 2.58 3.78
hill3 6.52 | 3.50 | 3.50 | 3.51 | 3.54 3.43
mtn1 6.89 | 2.59 | 2.50 | 2.45 | 2.45 4.20
mtn2 | 6.86 | 2.73 | 2.71 | 2.64 | 2.62 4.41
mtn3 6,17 | 2.77 | 2.64 | 2.69 | 2.71 4.14

accuracy of the known heights. Here since all the
height samples are concentrated at the river locations,
terrain surface smoothness 1s not that relevant, and
this justifies a high accuracy setting, say R = 20. The
new parameter { is much more interesting and thus
worth more attention,

Table 4 shows how f matters. f = 1.00 15 equivalent
to the original implementation. At that setting, HA-
ODETLAP performs worse than NN-SB (which we
find the best for case 1) because HA-ODETLAP at
that setting is essentally the same as conventional
ODETLAP. ODETLAP does not model the given
river locations as local minima. For all other settings,
we see significant improvements over NN-SB. Indeed,
we find that for this particular set of terrains, /= 1.02
gives consistently satisfactory results in general.

Figure 10, top left, shows the partial niver locations
and heights we offer, and its top right and bottom show
the recovered river connections using these two terrain
reconstruction schemes. One can immediately realize
that the tributaries cannot be correctly reproduced
when NN-SB is used: in this case we do not have any
height sample in the non-river area. As a result, NN-
SB fails to reconstruct the proper “V"-shape centered
at the river lines across the non-river regions, which 1s
important for deducing proper tributaries. In contrast,
the hydrology-aware adaptation in ODETLAP infers
local minima as long as the corresponding locations
are defined to be river locations, regardless of whether
heights are available.

Biased River Derivation

Note that in the above discussion, we emphasize the
use of a biased river derivation algorithm rather than
a typical river derivation algorithm. It 1s necessary
because the typical procedure fails to reproduce
every identified river location. Figure 11, top nght,
highlights those identified river locations that fail
to show up in the reconstructed river network (with
mtnl as the underlying terrain dataset). The biased
procedure aims to eliminate this situation within the
river derivation procedure. In the following, we will
ciscuss two biasing schemes and their rationales.

Biased Initial Water Assignment

A major source of such false negatives is the set of

the side streams which mark the onset of rivers. They
fail to be parts of the river network

again because insuflicient water gets
through them n the reconstructed
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terrain. As the terrain is already the
best that we can reconstruct, we
attempt to enable river flow across
those locations in a different way:
recall that we identify a location
as a river locaton as long as water
accumulation there exceeds a
certain threshold value. Theretore,
by assigning every known river
locanon an mmual water amount
that is equal to that criucal value,
they are automatically made river
locations even if no water flows
into them. Note that this practice
does not harm their downstream
locations, as we know water should
come out from those already-known
river locations anyway. In fact 1t
helps to recover those river locations
that are downstream of those given
river locations.

Such a change does not incur
much additional work to the river
derivation algorithm. For example,
with rwatershed, one 1s ready
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T'he bottom diagram ol Figure 11 shows
the river derivation results of min/ using
the above biasing techmques, and Table
3 presents the respective river/non-river
classification errors. As expected, all
the given river locations are identified
correctly, as shown in the diagrams that
all river locations marked i red in the
top right diagram are recovered in the
bottom figure, and in the table as the
drop in false negatives with respect to
given river locations. This contributes to
part of the drop in overall classification
errors. An addittonal benefit 1s on
those non-given river locations which
are located downstream of these
agiven river locatons. They are also
rediscovered because therr upstream
now has sufhcient water to support river
flow across them. An example is given
in the circled area in the figure. This
improvement leads to further drop in
the overall classification errors,

Figure 11. An example showing that given river locations may not recovered
with conventional unbiased river derivation scheme. The full river (top left).

Conclusion and
Future Work

The river network reconstructed using a conventional unbiased river deriva-

tion scheme is highlighted in light grey, while those given river locations being
missed out are marked in dark red (top right). The river network derived by

our biased river derivation scheme (bottom).

to specify the miual water amounts of individual
locations as a matrix parameter.

Biased thinmng

Another source of false negatives comes from those
river locations not lying on exactly the geographical
center of the preliminary river. Recall from our
previous discussion that the result of typical thinning
1s unbiased: the kept pixels are located at the
geographical center of the object. If that algorithm is

appled to the preliminary biased river network above,

we may lose a few given river cells because of the
inconsistency between the geographical center and
the “center line” of a river segment. We expect that
the “center line” of a thick preliminary river segment
consists of its local-minimum locations, where water
accumulations are at local maximum. Those locations
may not be located exactly at the geographical center
of the river segment.

To fix this problem, we impose an additional
constraint on the thinning procedure: we disallow
removal of all the known river locations. We privilege

those identified river locations when deciding whether

to keep the cells or notin the thinning process. Such a

small change does not introduce too much overhead.

We adapt a mask-based thinning algornithm (Diaz de

Leon et. al. 2004) for biased thinning in our prototype.

The gam i running time 1s msignificant.

We have presented the induced structure
approach for completing fragmentary
river networks, Its main idea is to
first reconstruct a structure based on
the available partial observations, and then use the
induced structure to derive the information we need.
Since we are deriving the information from a structure
induced according to the partial observations, we
expect that the derived informaton will enforce most
restrictions imposed by the observations.

When this concept is applied to fragmentary river
network completion, in the structure reconstruction
step we delineate a terrain surface that respects the
partial height observations, and portray the identified
river locations as local minima. In case height
samples are sparsely yet evenly distributed across the
terram, we achieve competitive results in terms of

Table 5. River/MNon-river classification errors with typical
and biased river derivation schemes. The figures outside
the parentheses are percentages with respect to all cells.
Those inside are percentages with respect to given river
locations only.

DEM Typical Biased

hill1 1.97 (9.51) 1.77 (0.00)
hill2 2.14 (12.12) 1.89 (0.00)
hill3 3.19 (24.37) 2.82 (0.00)
mtn1 2.48 (10.33) 2.21 (0.00)
mtn2 2.42 (11.35) 2.13 (0.00)
mtn3 2.50 (11.46) 2.25 (0.00)
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river location classification with NN-5B. It does not
require any parameter adjustment, thus saving us
from repeatedly generating the terrain with different
parameters and running the global river derivation
scheme in order to look for the optimal ones. This
feature is especially crucial when we are confronted
with increasingly massive terrain datasets. When
height samples are available at given river segment
locations only, we suggest HA-ODETLAP instead. By
regularizing all given river locations as local minima
and other locations as the immediate neighborhood
average, this approach induces ridges and valleys at
not only given river locations but also areas without
any height samples properly. We believe that this is
the reason why HA-ODETLAP induced-terrains
offer superior tributaries and hence smaller river/
non-river classification errors.

In the subsequent information derivation process
with the biased river derivation scheme, we allocate
critical initial amounts of water to the given known
river locations, and protecting them from removal
during the final thinning process. As a result, we
recover not only the entire given river locations but
also their connections to the main streams.

The beauty of our work lies in that the two
component processes above are both well-studied yet
evolving. Once a particular technique used in either
field becomes mature, we are ready to adopt it to our
work.

Having seen the success of this set ol techniques
wth completing hvdrology networks, we are extending
our work by studying the effect of the terrain type
(like flat tidal wetlands) on the reconnection results. A
particular terrain type may imply a specific pattern on
how the underlying rivers look like. Therefore it may
affect how the terrain should be induced and how the
river network should be formed. We are also eager to
port the same solution framework to complete some
other 2D networks like road networks, and extend
it to solve 3D network completion problems like
fragmentary dendrite networks.
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