CHAPTER 4

THE PRISM-MAP SPECIAL CASE

4.1 INTRODUCTION

This chapter describes an efficient algorithm for
displaying 3-D scenes showing discrete spatially varying
data. Given a 2-D map or planar graph composed of polygons
where each polygon has a positive real number attribute, a
prism is erected on each polygon with height proportional to
that attribute. The resulting 3-D scene is plotted with
shading and hidden 1lines removed. Thus the spatial
variation of the attribute may be quickly and intuitively
grasped by the nontechnical observer. This has applications
to areas such as geography if the map is a cartographic map,

or to physics if the map diagrams the periodic table.

THE PRISM-MAF SPECIAL CASE 4-2

The algorithm takes time ©N*log(N)) where N is the
number of edges in the map. Most of the calculations can be
done without knowing the prism heights so extra plots with
different attributes for the prisms can be produced quickly.
This algorithm has been implemented and tested on maps of up

to 12060 edges.

Consider a scene such as the base map of the USA shown
in Figure 4-1. This algorithm shows how to put a prism on
each state as shown in Figure 4-2 where the height of each
state is the per capita alcoholi;h in that state. Thus it

is easy to intuitively see the spatial wvariation of

a;coholism;

This example illustrates both what a PRISM-MAP is and
why it is so useful. With the information explosion, it is
no longer enough to produce data; the data must be in a form
that a caéual observer can easily and intuitivelf appreciate
or else it 1is worthless. As computing power becomes
cheaper, powerful display techniques like this become more
important both because there is more data to display and

because the display technigues are less expensive to use.

Figure 4-1: Base map of the USA

T
——\

T o
Mo L
1 il

1HHﬁEMH b 3

e oy : _0

.““-—-...__ !!03

Figure 4-2: Prism-map of the USA showing estimated alcoholism
per 100,000 people by state, with vertical
shading

THE PRISM-MAP SPECIAL CASE 4-4

This chapter describes a new, faster algorithm to
produce prism maps. Indeed, most of the calculation can be
performed on the two dimensional base map, producing an
intermediate file that can be combined with different sets

of heights to produce new plots.

This algorithm takes time ?(N*log(N}) where N is the
number of edges in the map. If cost were no object this
algorithm would not be necessary, since a three dimensional
scene could be generated from the base map and heights and
then fed into a general hidden surface routine. The. only
previous published solution did just this. Tobler [19??
took Omega{ﬁz) time, and could only process a few hundred
edges. This algorithm solves part of the problem of
displeying a varying 3-D surface of a function of two
variables. The surface can either vary discretely or
continuously. This algorithm handles the former case while
hidden surface contouring algorithms such as ASPEX by Rens
and Tobler before 1967, described in Lab for Computer
Graphics, [1977] and [1978] handle the continuous case.
(ASPEX is an updated version of SYMVU). This algorithm

adapts the concept of a horizon line, used in the continuous

case, to the discrete case. Although problems like this are

not that well known in the computer science community, there

’

THE PRISM-MAP SPECIAL CASE 4-5

have been attempted solutions for several years by
cartographers and geographers. Even though three
dimensional plots are more appealing, because of their
difficulty, various two dimensional methods have heretofore

necessarily been used.

4.2 THE ALGORITHM

4.2.1 Definition

Prism: A polyhedron that is the extension of a polygon in
the XY plane, into the Z direction. The top face is
congruent”to,.parallel to, and straight above the bottom
face. The side faces are vertical rectangles. If the 2-D
pelvgon has N sides then the prism has 2N vertices, 3N
edges, and N+2 faces. A simple polygon and the prism

derived from it are shown in Figure 4-3.

4.2.2 Basic Algorithm

The algorithm is basically this:

Figure 4-3: Simple polygon and the prism derived from it

THE PRISM-MAP SPECIAL CASE 4-7

l. Read the input map and normalize it.

2. Write its edges to a file, oﬁe edge per record.

3. Sort the file by minimum Y value of each edge.

4. Process the resulting file with a local processor that:
1. Reads edges in order, into memory,

2. Reorders them while in memory so that if edge El

hides (defined later) Ez, then El occurs before E2.

3. Writes them out.

5. Repeat the following as often as desired, once per plot:

l. Read the set of prism values or heights into

memory.

2. Read the final sorted file and as each edge 1is

read, draw part of the plot.

The steps will now be explained in more detail.

THE PRISM-MAP SPECIAL CASE 4-8

4.2.3 1Input

The map consists of points, 1lines and polygons.
However the only explicit datatype 1is a set of straight
edges or line segments that form &a planar graph. The
polygons, marked by unique identification numbers, can be

obtained from the edges. Each edge, E represents a

il‘
guadruple (Ai, Bi' Li’ Ri). Ai and Bi are the coordinates
of the two endpoints. Li and Ri are the two polygons, on
‘the 1left and right of E:i (looking from Ai towards Bi). The

nonexistent polygon on the exterior is numbered zero.

4.2.4 Normalization

The map can be observed 1in perspective in two
dimensions from some general point (X,Y¥) in the plane. It
is rotated, scaled and perspectively transformed to make the
viewpoint be at (86, -infinity). So now the projection is
orthogonal. For the actual 3-D scene, the viewpoint is
given in 3-space with a line from it to the origin forming a
given altitude angle with the horizontal. Newman & Sproull
[1973] gives a thorough description of 3-D transformations

and perspective projections.

THE PRISM-MAP SPECIAL CASE ' 4-9

Each edge also has two bits of supplementary
information calculated that tell whether the adjacent edges
at each end continue on in the same X direction or double
back. In Figure 4-4, edge B doubles back with respect to A
but C doesn’t. If there 1is more than one other edge
adjacent to A at a given endpoint, this is treated as a

double back on A. These bits are used later for shading.

4.2.5 First Sort

The first sort is by the minimum Y coordinate of each
edge. It is very simple and can be done quickly enough by
any reasonable external sorting algorithm, such as Knuth

[1973].

4.2,6 The Partial Order

4.2.6.1 The Partial Order In 2-D -

Definition: Edge A on the input map directly hides edge B

iff there exists a vertical line which intersects both A and
B with the B intercept being higher, and with no other edges
intersecting that line between the A and B intercepts. The

vertical line can intersect either edge at an endpoint.

4-10

Figure 4-4: Adjacent map edges doubling back on an edge

ot

S N T, T T

e e

Figure 4-5: The hidden relation between map edges

T

THE PRISM-MAP SPECIAL CASE o5l 4-11

This means that at that line, A obscures B as seen from the
viewpoint and that no other edge is between them at that
point.

Definition: A indirectly hides B iff there is a sequence of

N>2 edges Ci with A=Ci, CN=B' Ci d}rectly hiding Ci+l’ and A
does not hide B directly.
Definition: A hides P i1ff A directly hides B or A

indirectly hides B.

Notice that “hides” is closed under transitive
completion. Thus "hides" is a partial order on the edges of
the input map. In Figure 4-5, A directly hides B but
doesn’t hide C, directly or indirectly. Note that A can
indirectly hide B even though there is no wvertical 1line

intersecting both A and B.

Biding induces a partial order in 2-D because there
cannot exist a finite sequence of edges, each hiding the
next and the last hiding the first. This is not true in 3-D
since three rectangles, A, B, and C, can be arranged so that
A directly hides B, B directly hides C, and C directly hides

A.

THE PRISM-MAP SPECIAL CASE 4-12
4.2.6.2 The Partial Order Extended Into 3-D -

However, under some restrictions, polygons in 3-D must
satisfy this partial order. 1In particular,
Theorem: if a vertical rectangle is erected on each edge of
the 2-D map, and the whole scene viewed in 3-D, then the
rectangles cannot violate the partial order.
Proof: This is because if a 3-D recténgle extended from 2-D
edge A hides one extended from B in 3-D, then A must hide B
in 2-D. This applies regardless of the relative heights of
the rectangles. But these rectangles are just the prism

sides.

Now cbnsider the prism tops, that is the 2-D polygons.
Theorem: The prism tops can be split into polygons that can
be interspersed with the prism sides and satisfy the partial
order.

Proof: Tﬁe polygon’s edges can be divided into top and
bottom edges. In Figure 4-6, the top edges of the polygon
are dashed and the bottom solid. Each edge that 1is not
vertical has a top and a bottom side and the top edges are
those with the polygon adjacent to their bottom. Vertical
edges of the polygon are considered to be bottom edges. Now

split each polygon into several slices as in shown Figure

Figure 4-6: Slicing a prism top by dropping lines from the
' vertices between the top edges

THE PRISM-MAP SPECIAL CASE 4-14

4-6 by dropping thin.lines from each vertex that is between
two top edges down until the line passes out of the polygon.
Return to 3-D and <consider the prism tops, split into
slices. The prism sides obeyed the partial order but do
these top slices also? For a given prism, consider the

slice, S, derived from top edge T.

Theorem: The only polygon that S can hide directly 1is the
vertical face, V, on the back of the prism, also derived
from T. -

Proof: Consider a ray from the viewpoint going through S to
intersect-.énother polygon that S hides. But this ray is
entering the prism through S and so the next polygon it
passes through must be another face (or the bottom) of the
prism. But this other prism face must be a back face (it
clearly 1isn’'t a front face which is the only other choice).
If the ray leaves the prism through the bottom then it 1is
below 1level of the whole scene now so it will never

intersect anything else.

Theorem: The only polygons that directly hide S are
vertical faces of prisms below it, and those would hide T

lirectly if S were not present.

THE PRISM-MAP SPECIAL CASE 4-15

Prooi: As before, a ray from the viewpoint that intersects
S after passing through another face must be leaving some
other prism through that face. Because of the relative
orientations of the viewpoint and polyhedra, a ray can only
leave a prism through a back face or through the bottom. So
any face directly hiding S is . a back vertical face of
another prism. Since the viewpoint is at (8, =-infinity),

this other prism is below it.

Thus S fits neatly into the partial ordering and does
not cause any circularity. Note that it was necessary to
split the_ptism tops or else under a circularity could

happen.

Since the prism top slices always immediately precede
the prism vertical faces in the ordering, when sorting all
the polygons to fit the partial order, it is sufficient to
sort the 2-D edges to fit the 2-D partial order and then
from each edge that is a polygon top edge to create two 3-D
polygons, a top slice and a vertical wall, and from each

other edge one polygon, a vertical wall.

THE PRISM-MAP SPECIAL CASE 4-16
4.2.6.3 The Simplified Algorithm -

Now given that the priSm map ‘s polygons can be ordered
as described above, a possible hidden surface algorithm
would be to paint them in order onto an initially blank
screen, taking care to paint only blank parts of the screen
and never to overpaint anything. But first the partial

ordering has to be calculated.

4.2.7 The Final Sort

The algorithm for the final sort is, briefly:

l. Run a scan line up the screen, from y=0 (the bottom) to

y=1l (the top).

2. As the scan line rises above the bottom of an edge, E,

read it into memory.

3. When E is read into memory, compare it against the edges
adjacent to it on the scan line to determine if it directly
hides them or they directly hide it. 1If one, say A, hides
another, say B, add a link between A and B so each knows

about the other.

THE PRISM-MAP SPECIAL CASE 4-17
4. If the scan line rises above the top point of E, then:

1. If E is has been determined to be hidden by any

edges still in memory, then do nothing.

2. Otherwise write E to the final sorted edge file.

5. If E was written, possibly there are some edges that
were remaining in memory only because they were hidden by E
and no other edges. If so, write them out, and repeat the
process until there are no edges completely below in the
scan line remaining in memory unless they are hidden by some

edge still in memory.

The steps will now be expanded:

4.2.7.2 The becan Line -

Since an edge A that hides edge B usually has a smaller
minimum Y coordinate, the initial sorting is mostly correct.
However, there can be violations as shown in Figure 4-7.
Here A hides B and has & smaller minimum Y which is normal,
but C hides D while it has a larger minimum Y than D. This

second sorting step finds and corrects these cases.

P\ 4-18

Figure 4-7: Edges misordered after the first sort

THE PRISM-MAP SPECIAL CASE 4-19

Edges are read from the presorted edge file one by one.
They are kept in memory for a while, during which time they

are called active edges. While in memory the active edges

are reordered if necessary and then are written out, one by

one.

Imagine a scan 1line e running across the map.
Assuming the map’s Y values run from from 6 to 1, the scan
line initially has Ys=! and it moves up the page until Ys=1.
Since the edges have been sorted by minimum Y, as the scan
line moves up the page, it will encounter them in order. At
any given time, those edges above it have not been read yet,
those croésing it are the active edges, and those below it
have generally been reordered and written out. To determine
when an edge is to be written, it is necessary to know if
its maximum Y value is below Y. For this, all the active

edges are arranged into a priority 1list data structure,

implemented as a heap as described in AHU [1974]. The key
of each edge is its maximum Y. Every time : 8 is increased,
the mimimum element of the heap is compared with Ys and
written out if it is less. This 1is repeated until the

minimum element of the heap is greater than Ys‘

THE PRISM-MAP SPECIAL CASE 4-20

is not raised continuously. Instead, a new edge, E,
is read from the file and T is raised to the minimum Y
value of E. E is held until the necessary edges from the
heap are written and then it is processed and among other

actions added to the heap. Then the next new edge is read,

and so on until the end of file.

4.2.7.3 Detection Of Ordering Violations -

Theorem: Two edges, A and B, with-A directly hiding B but B
before A in the sorting order, must both be active edges for
some value of Y.

Proof: .if not, since B was before A, B's maximum Y value
would be below A°s minimum Y value. But then it would be
impossible for A to hide B. So both edges will be in memory
together at some time, that is must both be active edges for

some YS .

Further, consider when A<B directly and there are no
other edges between them. Then either they are adjacent for
some‘YS, or there is a chain of edges from A to B, with each
pair adjacent for some scan line, and with the first of each
pair hiding the second. Thus it is only necessary to check

adjacent edges along the scan line for violations. However,

T

e kR R i i SR i T s S

THE PRISM-MAP SPECIAL CASE 4-21

adjacency relationships along the scan line only change when
an edge is added or deleted. Therefore when a new edge, E,
is added to the active set, it is only necessary to compare
E with its one or two neighbours. When Y is high enough so
that E is written out, then its two neighbours must be

compared against each other.

A tree data structure is used to hold the adjacency
information along the scan line. Each edge is entered with
a key that is the X value of its intersection with the scan
line. This wvalue changes whenever T increases, but the
keys need not be recalculated since they are not stored
explicitl&. Instead each edge’s equation is stored in the
form x=ay+b so that the keys can be calculated from the
current value of Ys whenever the tree is accessed. This
method of handling the keys would only cause problems if the
edges changed order as Yo increased. But this cannot happen
since the edges in the original map are forbidden from
intersecting. Instead of the input data containing two
intersecting edges, it should contain four edges and an

extra vertex (the intersection point).

THE PRISM-MAP SPECIAL CASE ; 4-22

If edges A and B are compared and it is discovered that
A hides B, nothing is done immediately except to note the
fact. There is a counter attached to every edge in memory
telling how many other edges have been found to hide it.
When an edge is read into memory, this counter is zero. In
this case, B’'s counter 1is incremented by one. B is also
added to a list attached to A of all the edges that A has
been found to hide. Then when the time comes that Ys is
above Bs maximum Y value, B’s counter is checked to
determine the number of active edgés hiding it. There might
not be any left now even if there were some before, since if
their maximum Y values were smaller than B’s, they would
already have been written out. If B is no longer hidden by
any active edges, then it is written. Otherwise it is
nevertheless deleted from the active edge set, but remains

in memory (called a semiactive edge), accessible through its

membership on A’'s list of edges that A hides.

The semiactive edges are written afier the active edges
that - hide them. Whenever any edge is written to the final
sorted edge file, its 1list of edges that it hides is
traversed 1in order. Any edge whose hidden counter is
greater than zero cannot yet be written out since some other

edge still hides it and must be written first. 1In this

THE PRISM-MAP SPECIAL CASE s 4-23

case, the counter is decremented by one. But if the counter
is zero, the edge can be written out and finally deleted
from memory. This edge itself has a list (possibly empty)
of edges that it hides and after it is written out they are
also tested and possibly written. Thus the active edge
being written 1is the root of a tree of semiactive edges.
This tree is traversed in depth-first order, writing out any

edges with zero hidden counts.

A given edge may occur more than once in the tree if it
is hidden indirectly more than one way. Then every time is
it accessed -but for possibly the 1last time, it is not
written éinCe its hidden count is positive. The last time
it is accessed in the tree from this active edge it will be
written out wunless it is hidden by still another remaining

active edge.

After the last edge has been read into memory and
processed, Y. is raised to the top of the screen to force
the processing and writing out of any remaining semiactive
edges. There will be no edges remaining at the end that
cannot be written because they have hidden counts greater

than zero. Indeed, an edge’s hidden count reflects the

number of edges left in memory that hide it. If no edge

THE PRISM-MAP SPECIAL CASE . 4-24

that was left could be written because they all were hidden
by some edge then there would have to be a circularity in
the hiddenness relation which is impossible since it is a

partial order.

4.2.8 Making The Plot

The sorted edge file that was produced in the previous
section can now be used with any set of prism heights to
produce a plot. The basic algorithm uses a concept of a’

horizon 1line that has been used previously to draw hidden

surface plots of net representations of bivariate functions.

A horizon line is a function Y=F(X,T) where X and Y
address the plotter screen and T is the elapsed time. The
line stretches across the plot from left to right and since
it is a function never doubles back on itself. At T=@, it
lies along the bottom edge of the plot and it increases with
T At any time, it cuts the plots into two regions: The
area below has been calculated and plotted while the area
above has not been.touched yet. As a new part of the plot
is calculated, the horizon 1line is raised above it to
include it. Thus this is simply an implementation of the

simple algorithm mentioned above in section 4.2.6.3.

4-25

LY
LY
N

—y

g

el el . ™S

Figure 4-8: Prism edges induced by one map edge

HH

ﬁ'_ '

Figure 4-10: Prism-map of publié school expenditures in
the USA, by state, per capita, showing
contour line shading

4-27

Figure 4-11: plotting a polygon and raising the horizon line

THE PRISM-MAP SPECIAL CASE 4-28

To produce the plot, the prism heights are read and
stored in memory in a hash table indexed by polygon number.
Then the sorted edge file is read, and each edge induces
part of the plot. Consider for example edge E in Figure
4-8. It has polygon A on its left and B on its right. E
causes four 1lines to be drawn - the dashed lines in the
figure. They are two vertical edges common to the two
prisms and a top edge of each prism. The heights at which
to draw the lines are known since each edge knows the
polygons on each side. If the horizpn line should cut
.across the lines, only the part above the horizon 1line 1is
drawn. This is the way hidden edges are prevented from
being drawn. After the lines are drawn, the horizon line is
raised above_ them. Figure 4-9 shows Figure 4-2 halfway

through its plot with the current horizon line sketched in.

In Figure 4-8, the left prism is higher than the right
one. If it were 1lower, then only one top edge would be
visible to be drawn since the higher right prism would hide
the left one. Also note that every vertical edge of a prism
can be induced by two or more edges of the map.
Nevertheless it 1is drawn only once since after the first
time it is drawn, the horizon line 1is raised high enough

that it is not drawn again. Figure 4-11 shows how the

THE PRISM-MAP SPECIAL CASE 4-29

horizon line is raised as only the visible portion of a new

polygon is drawn.

4.2.9 Shading

The 1as£ section described how the plot was drawn and
how hidden lines were calculated; this section describes how
it it shaded. Two different types of shading are possible:
contour 1lines or vertical shading that assumés an iﬁaginary
light source. 1In either.case, extfa lines that were not

part of the original plot are added to highlight it.

4.2.9.1 Contour Lines =

These lines run along the sideé of the prisms and in
the original 3-D scene would be horizontal. If the prisms
were cut from thick layers of plywood, the contour lines
would be the joins between the plies. They are equidistant
and enable the user to count up the side of the prism to

determine its height.

Contour lines may produced by not drawing the top edges
of the prisms immediately. 1Instead the top edge is raised

gradually from the bottom edge in increments of the contour

THE PRISM-MAP SPECIAL CASE 4-30

spacing until its proper value. The complete calculation
involving the horizon line is performed for each contour
line. The edges are still processed in order: all the
contour lines for each edge are drawn before the next edge
is read. This seems slow but is necessary to determine
which parts of the contour lines are visible. Figure 4-10
is an example of contour shading. It shows relative per
capita public school expenditures by state. Figure *&=»
shows per capita public school expenditures by state with

the contour lines at multiples of $50.

“4.2.9.2 Vertical Shading -

The sides of each prism can be shaded with vertical
hatch lines that cfeate a grey scale approximating
illumination from a light source. However, the intent here
is not to approximate physical reality, (for which see
Newell [1977]), but to suggest contrasts so as to make the
plot easier to understand. As an analogy, it is easier to
learn to recognize a person from a skilled caricature than
from a photograph since the carﬁoon emphasizes the features,
be they a large nose or whatever, that are not average and

plays down the normal ones. Here it is desired to highlight

T

THE PRISM-MAP SPECIAL CASE 4-31

the indentations in the boundaries. To do this, a cosine
law raised to a power is used. With a cosine law, the
shading on a face is directly proportional to the cosine of
the angle between the normal to the face and the direction
of an imaginary light source. Raising the‘cosine to a power
increases the amount of very light and very dark areas at
the expense of the middle intensity grey areas that would

normally cover most of the plot.

In Figure 4-8, edge E induced two areas to be .shaded.
They are a vertical side face of prism A and a slice of the
top of prism B. The areas in each case are precisely the
area betWeén the corresponding top edge and the current
horizon line. The top edge of B is drawn first and then the
top of B below the edge down to the horizon line. Since the
other edges of B that are below E have already been
processed, the horizon 1line cannot be below the bottom of
B°s top. Thus shading down from the top edge doesn’t cause
a streak down to the bottom of the plot. After the top edge
of B has been drawn, E causes the top corresponding top edge
of A to be processed. By now the horizon line is at the top
edge of B so that shading down from the top edge of A shades

precisely that part of the side face of A which is above B.

4-32

/
h

/
A\

~—

e

L

Figure 4-32: Perturbing shading spacing to smooth it

THE PRISM-MAP SPECIAL CASE 4-33

Various details must be handled to make the shading
attractive.l For instance, the length of E may be not many
times the shading spacing. To make the shading blend more
smoothly from one edge to the adjacent one, the shading
spacing is adjusted slightly so that there are an integral
number of shading bands along E. This prevents the dark
band that would occur if two shading lines were very close
together because one was induced by E and one by E’s
neighbouring edge. Similarly a 1light band could arise.
Figufe 4-12 shows two adjacent faces before and after the
shading'spacing was perturbed slightly to as to create an
integral _nhmber of bands along the face. The resulting

shading appears much smoother.

A worse problem arises when E is actually shorter than
the desired shading spacing. In this case, a random number
generator is used to decide whether to draw one shade 1line
or none. This keeps the average density of shading correct
but introduces another problem; that of random clustering.
#hen a long border between two polygons is broken into short
straight edges, these edges are separated so that they are
10t plotted in order. Thus there is no correlation between
10w the vertical wall due to one face is shaded and how its

1eighbouring wall is shaded. Because of the random number

THE PRISM-MAP SPECIAL CASE 4-34

generator, several consecutive faces may have shade lines
followed by several in a row that have none. This is the
same type of clustering that is observed when a polygon is

shaded by random independent points.

If in fact the whole <chain (the sequence of edges
forming the border between two polygons) were shaded as a
unit, then there would be no procblem. Starting at the
chain’s beginning, the accumulated light or darkness on the
chain could be measured as the edges twisted and meandered.
When the accumulated light on the chain passed one unit, the
accumulated light could be decremented by one, and one line
of lightn drawn. If shading were by lines of darkness, as

with ink, an analogous operation would be performed.

This process can be done even though the chains are
split up by calculating the shading at the time the map is
normalized and before the chains are split into edges. Then
each edge has stored with it the starting location and
increment, of any shade lines of vertical walls induced by
it. However this method requires that the shading algorithm
be fixed at sorting time. Previously the angle of
illumination and the exact relation between the illumination

and tne shading spacing could be decided just before the

b

THE PRISM-MAP SPECIAL CASE 4-35
plot was produced without resorting.

Some plot time freedom in the shading algorithm can be
obtained by extra information with the edges when they are
split off from the chain. This extra information contains
quantities such as the edge’s length along the chain, length
along the projected chain etc. It =allows faces resulting
from adjacent edges to be shaded continuously. Assume the
shading function can be decomposed into a weighted sum of
functions of the 1light anglé and certain fixed basis
functions of the edge’s position on the chain. Then if the
values of the'bésis functions are stored with each edge, any
shading 1£w obtained by varying the weights can be chosen at
plot time. The only problem with this approach is the extra

storage required to store the sorted edge file.

4.2.9.3 Silhouette Edges -

The vertical edges of the prisms may or may not be
drawn, but either way causes problems. If they are drawn
then in places where the map edges are very short, there are
more 1lines due to the vertical edges than due to the

shading. This makes the effective shading dependent on the

length of the edges which is unreasonable. On the other

4-36

Figure 4-13: Silhouette edges of a prism

THE PRISM-MAP SPECIAL CASE s 4-37

hand, if no vertical prism edges are drawn, then there will
be no edge to mark where the prism doubles back, unless
perhaps there is a shading line right at the.edge. To solve

this problem, only the silhouette edges are drawn. They are

vertical edges rising from points where the 2-D polygon
doubles back. In 3-D, these edges generally delimit areas
of the plot where there are two different prisms, since if
prism P doubles back, then P will be on one side of the
vertical edge, in the plot, and whatever is behind it will
be on the other side. These silhonette edges are identified
by the marking bits that were stored with the edges when the

map was normalized and split into separate edges.

In Figure 4-13, the nonsilhouette edges are B and C.
The silhouette edges are A, D, and E. The silhouette edges
are not the final answer to whether or not to drawn the
vertical edges. This is shown by edge'D where we might want

to omit the part drawn in double thickness.

THE PRISM-MAP SPECIAL CASE 4-38

4.3 STATISTICAL ANALYSIS OF INPUT DATA

4.3.1 Theoretical Analysis

To analyze the time required by this algorithm, it is
necessary to know the statistical distribution of the input
maps. This is very difficult to determine from first
principles. All we <can do is to determine a sufficiently
robust set of statistics for the algorithm and hope that any

nocvel applications are not too ill conditioned.

Geographic boundaries fall into two categories:
natural and man-made. The natural boundaries, according to
Mandlebrot }1977], are probably scale invariaht and in fact
form fractional dimensional curves. Scale invariance means
that statistically the boundaries'look the same regardless
of their scale: an inch to a mile is no different from an
inch to an inch. Fractional dimension means that under a
suitably generalized notion of dimension, these curves have
a dimension between one and two. Scale invariance makes
even statistics such as how often a curve crosses a given
scan line are meaningless since the curve’s 1length becomes
infinite. However this is irrelevent since even though the
original boundary may be scale invariant, after it has been

digitized and generalized to a given level of accuracy it is

THE PRISM-MAP SPECIAL CASE 4-39

no longer scale invariant. This can be proven but is
intuitively reasonable since a boundary digitized to a given
accuracy, e, will have its form determined by e, and so its

properties will depend on its scale.

In contrast, there is no theory at all for madmade
borders. They may be straight or smoothly curving lines
along parallels and meridans. They may also be
gerrymandered without rhyme or reason. Probably the only
thing to do here is to take a statistical sample and attempt

to derive a heuristic law.

What can be done theoretically is tb determine how a
map might get more complicated; that is what might happen to
the number of polygons, P, and the total length of all the
edges, L, as the number of vertices, N, increases. Two

things may happen:

l. The map may have the same polygons as before but
the boundaries may be represented more accurately
so that P stays constant but L iﬁcreases with N.
The exact relation depends on the form of the

borders.

THE PRISM-MAP SPECIAL CASE - 4-49

2. Not only may be boundaries get more accurate, but
there may be more divisions. For instance if the
first map is of states, the second, more accurate

map may include counties and parishes.

Statistics for the first case were gathered and will be
summarised in the next section. For the second case, let a
map with a given N, P and L be replaced by 4 copies of
itself reduced to half the scale so that the total size

remains constant.

,

Then N° .= 4N
B = 4P
- =.4L/2 = 2L
Thus P = B(N)
L = G(Nl/z)

These statistics are independent but there are various
important dependent statistics such as the average number of
edges crossing any scan 1line, or the average number of
active edges, M. Another is E, the number of edges. Most
of the vertices are incident on 2 edges and rarely a vertex
is incident on as many as 4. As N increases the fraction of

vertices incident on only 2 edges tends to one. This is

3

THE PRISM-MAP SPECIAL CASE 4-41

because most of the vertices are separating short straight
line segments on a long continuous boundary. So E = N. Now
an edge of length L that is assumed to be randomly oriented
has a projected vertical length of 2L/pi = £.637 L. Since
the screen is of height one, this is its probability of
intersecfing a given random scan line. Thus the average
number of edges intersecting a scan line is

M

.637 L

e (L)

9(Nl/Z)

4.3.2 Heuristics

To better determine the distribution of input maps,
some measurements were made of parts of the World Data Bank
II, described in Anderson [1877], which contains national

boundaries and of the aforementioned map of the USA with

. state boundaries. To test the first way & map might get
| bigger, WDB-II with 14378 edges was generalized to 7
E different levels of accuracy, the last reducing the number

. of edges to 2469. The generalization algorithm of Douglas

i

[1973] was used. The number of active edges, M, was related

to the number of edges, N, with a 9% error by M=cNg‘15.

 adiaiane

THE PRISM-MAP SPECIAL CASE 4-42

This is a much slower rate of increase than the theoretical
analysis showed for the second case so the second case is

indeed a more stringent test of the algorithm.

Next the robustness of the number of active edges was
tested by rotating the USA map to 6 different angles and
measuring the average and maximum number of active edges.
To the nearest integer, the average was always 15 and the

maximum varied from 29 to 35.

It is somewhat surprising that the average should be so
constant since the USA contains so many borders that run
either north-south or east-west. There seem to be three

reasons:

1. The north-south edges tend to balance the east-west
edges to the first order leaving only a second
order variation in the total projected edge 1length
(which 1is proportional to the average number of

active edges) as the map is rotated.

2. Even though the predominant direction of an edge
may be north-south, there are many little
diversions that do not appear too important on the

map but which even out the statistics.

THE PRISM-MAP SPECIAL CASE 4-43

3. Although the straight man-made borders stand out,
still most of the map consists of natural borders

whose statistics are independent of orientation.

However, this invariance of M with angle or orientation
fails to hold with maps where in one part the size of the
polygons is greatly different than in another part. One
such example 1is Chicago Standard Metropolitan Statistical
Areas which are much smaller in the city centre than in the
suburbs. Then a scan line that runs along a main street can
cut many more edges than a scan line that has been rotated

even slightly.

4.4 RESOURCES REQUIRED BY THE ALGORITHM
4.4.1 Time

This section analyses the theoretical performance of
the algorithm. Luckily it turns out that the results are
robust and independent of the detailed distribution of the
input data. Let
T - Time to calculate and plot one scene.

Ay = Initial formatting time.

THE PRISM-MAP SPECIAL CASE 4-44

BN = First sorting time.

CN = Second sorting time.

Dy = Horizon array processing and plotting time.
Then TN = AN + BN + CN + DN

Now the initial formatting time is one sequential pass so
Ay = 6(N)
and like all reasonable sorts,

BN = ©@(N*log(N))

The final sorting time requires accessing a heap and a
tree, both of average size M, for ©(N) times. Each access
takes time ©6(log(M)). So
CN
This is no larger than BN so long as log(M) < 1log(N), that

= ©(N*log (M))

is so long as M < N® for some c. 1In the last section on
statistics of the input data, this was determined to be true
with «<l/3. Note that although the actual value of ¢
doesn’t affect the rate of growth of the time, it does have
a dramatic effect on the multiplicative constant since in
practice the final sort is by far the slowest part of the
algorithm. Note also that the restriction of M to be a
polynomial function of N is no restriction at all since M is
bounded above by N. This would give c=1. 1If this actually

happened, the algorithm’s asymptotic growth would be the

THE PRISM-MAP SPECIAL CASE : 4-45
same but it would use much more storage. In any case

CN = O(N*log (N))

The final plotting time reguires one pass through the data

S0

D,, = 6(N)

Thus T ©(N*log (N))
which, for a hidden surface algorithm, is a satisfactory

time.

4.4.2 Storage

The whble input file is never in memory at any one
time. During the preprocessing stage, three edges need be
in hemory together. One is being processed and the other
two are its neighbours that are needed to set the silhouette
bits stored with the edge for shading. The external sorting
runs better the more storage it gets, but only needs a small
constant amount. The only variable part of the algorithm is
the final sort during which the active edges all must be in

1/2) edges or for the 4641 edge USA

memory. This is M = (N
map, an average of 15 and a maximum of 32. The final

plotting requires a constant amount of storage.

THE PRISM-MAP SPECIAL CASE 4-46
4.5 IMPLEMENTATION

The algorithm described in this chapter has been
implemented and is described in Appendix B. This appendix

also contains many more examples of prism plots.

CHAPTER 5

THE HIDDEN SPHERE SPECIAL CASE

5.1 INTRODUCTION

This chapter gives an algorithm for the hidden surface
problem in which the ' scene is a set of non-overlapping
spheres in perspective projection. If the assumptions
mentioned. later are satisfied, the algorithm executes in
time 9(N5/3*log(N)). Under these same assumptions, X, the
number of intersections among the intersections of the

/ 5/4

projected spheres, is G(N4 3) so the time is ©(X *log (X))

which is not too much faster than 6(X).

A typical scene might be a ball model of a molecule,
each atom of which is represented by a sphere. This problem
is important because molecular models for chemists are more
than Jjust toys. Chemists need to construct them to obtain
an understanding of the spatial relationships between the

different parts of complex molecules. The repetitive

THE HIDDEN SPHERE SPECIAL CASE 5=2
INTRODUCTION

construction of mechanical models is slow and tedious, so it
is useful to automate the problem. Such an algorithm can
also provide a graphic output mechanism for other computer
programs in chemistry, such as those that assist the chemist
in developing new synthesis paths. These work by combining
a large computer database of chemical knowledge with the
chemist s intuition and creativity. Thus any means of

making ‘the interface freer are useful.

To date, much of the work oﬂ the design of hidden
surface algorithms has been done on the case in which the
objects,haﬁe straight edges and flat faces. A good summary
of the various algorithms with many references is
Sutherland, Sproull & Schumacker [1974b]. Curved surfaces
(modeled by splineé), reflections and semitransparant
objects have been handled by Blinn [1976], Crow [1976],
Gouraud [1971], Levin [1976], Mahl [1972] and Phong [1975]
but the algorithms are very slow. Wright [1974] plots
5 irregﬁlarly shaped objects by dividing a 3-space box
; containing the object into cells with a 3-D grid. Then a
; bit array with one bit per cell tells which cells the object
ézis in. Finally a generalized horizon line problem draws the

i_visible portions of the cells, front to back. This

THE HIDDEN SPHERE SPECIAL CASE 5-3
INTRODUCTION

algorithm was designed to draw electron orbital clouds.

Bere I consider another special case where the 3-D
object is a collection of nonoverlapping identical spheres
such as the atoms in a ball model of a ﬁolecule. Because of
the difficulty of drawing such models, chemists® programs
have generally been restricted to plotting line outlines of
the molecules that show only the bonds, such as in Nir,
Garduno & Rein [1977]. Since there are no hidden lines,
"there are few depth cues in the plot so cues must be added
by mechanisms such as viewing stereo pairs and varying the

thickness of the lines.

A special case hidden sphere algorithm should run more

efficiently than a general hidden surface algorithm because:

1. It considers the hidden spheres as spheres and not
as straight line approximations or as special case

splines or patches.

2. There is a pértial order spheres: spheres A and B
are related when A is in front of B as seen from
the viewpoint. This partial order doesn’t exist
for general objects in three dimensions. For

example, in Figure 5-1, three bars, A, B and C, are

5-4

\\

s that cannot be ordered by distance

Figure 5-1: Three object

THE HIDDEN SPHERE SPECIAL CASE 5 5=5
INTRODUCTION

arranged in space so that A is in front of B at
some point, B is in front of C, and C is in front
of A. General hidden surface algorithms that wish
to use this partial order must detect such
violations and split the offending objects into

several pieces until a partial order exists.

Since only spheres and not straight 1lines and
planes are allowed in the input, the algorithm can
be much simpler than a géneral purpose one that
handies more general scenes. This is not to say
'thét the algorithm would necessarily be slower if

it handled more special cases, only that it would

be more complicated.

5.2 NOTATION

number of spheres
the i-th sphere.
the i-th circle, the projection of s, onto the

perspective plane. ¢ will refer to either the

perimeter or the surface area, depending on the

THE HIDDEN SPHERE SPECIAL CASE 5-6
NOTATION

context.

]
"

radius of circle c; in the plot.

a}
"

ri when all the ri are the same.

o
"

distance of sphere S from the viewpoint.

location of the centre of ci on the screen.

o
-
"

5.3 DEFINITIONS

1. constant density packing of the spheres: As N tends to

infinity, the total volume of the spheres is ©(the volume of

the smailést enclosing cube).

2. average depth of circles on the screen: This is the

average number of «circles a uniformly distributed random
point on the screen falls within. Given that the screen has
a fixed size, this is proportional to the total area of the

circles.

THE HIDDEN SPHERE SPECIAL CASE . 5=17
ASSUMPTIONS

5.4 ASSUMPTIONS

1. The size of the screen is 1 by 1.

2. As N increases, the r, are scaled so that the projected

scene fills the screen.

3. No two spheres intersect in 3 dimensions (although of
course their projected circles frequently overlap in 2

"dimensions).

4. The spheres are equal sized and the projection is
isometric so all the spheres project onto circles of the

same size.

5. The spheres are ordered so that i<j = diﬁdj’
6. The spheres are packed with a constant density as N

tends to infinity.

7. The complexity of the plot is taken to be the number of

intersections between the -

THE HIDDEN SPHERE SPECIAL CASE .2~B
ASSUMPTIONS

5.4.1 Accuracy Of Assumptions

The first two assumptions are that the screen 1is a
fixed size and that the projected scene fills it. They just

assert that the projection and scale are normalized.

The third assumption, that no two spheres intersect in
three dimensions, restricts the wutility of the algorithm
somewhat since it forbids molecular models where the
electron clouds around the atoms overlap each other. It is
made so that the intersections of the spheres do not have to
be calculated. Also, if the spheres intersect, the
projections of their perimiters are no longer circles, but
now are combinations of sections of general conics.
Nevertheless, it would be worthwhile to relax this

assumption sometime.

The fourth assumption, that the projected «circles are
of equal sizes, also simplifies the algorithm and its
analysis. The analysis is simplified because if the circles
are of different sizes, either because the spheres are
different sized or because the projection is not isometric,

then there is another parameter that must be modeled and

THE HIDDEN SPHERE SPECIAL CASE -9
ASSUMPTIONS

analyzed. Since, as has been stated before, there is no
clean logical definition of, and probability measure on, the
sample space of input scenes, this is not just a
mathematical problem. It involves' experiments on actual

scenes likely to be used.

The problem here is that there is no <clear axiomatic
definition of the hidden surface problem since it is an
applied problem and mﬁst solve the problems users wish it to
solve. Determining the statistics of the scenes the
algorithm will be used on, before the algorithm exists, is
impossiblé since even the wusers don’t know. After the
algorithm becomes available, a demand will be created that
did not exist before. The space of problems that the
algorithm will be wused on will also become favourably
biassed as time goes on since it will be used m&re often on
those cases it handles the most efficiently. Because of
this, _the. best that can be done is to pick some reasonable
scenes that are neither too easy nor too hard and design the

algorithm to solve them. This is why assumption 4 is made.

Nevertheless_it will be relaxed later.

THE HIDDEN SPHERE SPECIAL CASE 5-189
ASSUMPTIONS

Assumption 5, that the spheres are sorted, states that
a simple preprocessing step taking time ©(N*log(N)) has been

performed already.

Assumption 6, that the spheres are packed with constant
density, is major and 1is not obviously true. 3t is
satisfied by molecules that grow like "blobs" equally in all
directions without sending out 1long streamers. Regular
crystals usually satisfy this. The implication of this
assumption is that only a few of the atoms in the molecule
are visible, even partly. For instance in a K by K cubic

crystal, bf the K3

atoms, only the G(Kz) atoms (those on the
front surface and a small distance 1in) ére visible.
However, many organic molecules are long and stringy. As
they get bigger, they get longer but no wider. Thus when
obsefved from thé'side, most of the atoms are visible. Of
course, for any given molecule, the radius of the atoms can
be changed so that any proportion of the atoms are visible.

In the limit as r->@, the atoms become points, and thus they

all can be seen.

THE HIDDEN SPHERE SPECIAL CASE 5-11
ASSUMPTIONS

The last assumption, 7, that the measure of complexity
is the number of intersections among the projected circles,
sets a standard of complexity against which the performance
of different algorithms can be measured. It is insufficient
to use the number of spheres, N, since then the Ly must also
be considered. This is an attempt to combine them into one
measure of complexity. It is a reasonable one since the
number of arcs is proportional to the number of
intersections. Another reasonable measure of complexity
would be the number of visible arcs of spheres but this is

much more difficult to handle statistically.

Under the equal density assumption, the number of
intersections is related to the number of spheres by
X=G(N4/3) so this assumption is useless since N can be used
just as easily. This assumption is included for the more

general cases when the equal density assumption is relaxed.

THE HIDDEN SPHERE SPECIAL CASE 5-12
THE HIDDEN SURFACE ALGORITHM

5.5 THE HIDDEN SURFACE ALGORITHM

5.5.1

Perspective Projection

As usual, and as explained in chapters 2 and 3, we are

looking

from a point in 3-space, the viewpoint, through the

perspective plane, to the scene. The image on the

perspective plane of any point on the scene 1is the

intersection of the plane and a straight 1line between the

viewpoint and that point in the scene. 1If the projection is

isometric or orthogonal, then the viewpoint is at infinity

and the projection lines are parallel.

5.5.2 Schematic Algorithm

PROC Hiddensphere (SS)
Project (SS);
Normalize (S8S);

G = {g} <- Clcgrid(ss);
FOR i TO |G| DO

1

2

3

4 Sort (SS by d.);
5

6

7

8

9

10
11
i3
13
14

H <- {h | h=g and there is a circle with centre in
g that intersects ci};
U <- {u | u=c such that c"has centre in some h};
A <- {a | a is a arc resulting from intersecting
some ¢ with circles in U};
A2 <- @;
FOR p to |A| DO
b <= true;
FOR 1 70 |B] DO
IF Contains(ul, ap) THEN b <- FALSE;

1

THE HIDDEN SPHERE SPECIAL CASE 5-13
THE BIDDEN SURFACE ALGORITHM

15 ENDDO;

16 IF b THEN Plot(a.);

17 IF b THEN A2 <- Bnion(A2,a_);
18 ENDDO; P
19 Shade (A2) ;

20 ENDFOR;
21 ENDPROC;

Notes:
1. Hiddensphere takes the set of circles as argument.

2. Project(SS) projects the spheres according to the

viewpoint and perspective plane.

3 Normaiize(SS) scales and shifts the projection so that

it fills a one by one square.

4. Sort(SS) sorts the projected circles by the distance of
the original spheres from the viewpoint. The spheres are

renumbered according to this order for future simplicitly.

5. Calcgrid(SS) calculates a grid of NG by NG cells for
some NG dependent on.SS in a way to be determined later. It

returns G={g} the set of grid cells.

THE HIDDEN SPHERE SPECIAL CASE 5-14
THE HIDDEN SURFACE ALGORITHM

14. Contains(ul, ap) returns true or false depending on
whether the circle uy contains the arc ap. This is a fast
operation since ap cannot cut Uy it is either all inside or
all outside. So just pick a point on it and see if that
point is closer than r than the centre of ap.

16. Plot(ap) draws the arc a Since the circle, ¢, that

pl
ap came from is known, the arc can be drawn in such a way as
to indicate this. For example if the scene is a molecular
model, circles corresponding to different types of atoms

might be dotted or dashed instead of being drawn solidly.

17. Shade(A) shades the area enclosed by the arcs of A.

5.6 STATISTICAL ANALYSIS

A circle, Cir is intersected by all other «circles cj
such that Idi—djl < 2r. The problem of finding them seems
similar on the surface to the nearest neighbour algorithms
of Rabin [1976] and Yuval [1975]. However there is little

relation since we want all the points within a given

distance, not the closest point.

THE HIDDEN SPHERE SPECIAL CASE 5-15
STATISTICAL ANALYSIS

Lemma: If there are N spheres packed with constant density,
1/3)

Proof: If the scene has linear size x then its volume is

x3. The total volume of the spheres is ©(N) which is

1/3).

then the scene has size 6(N

©(volume of the scene by definition), so x=6(N
Lemma: If the scene is projected to a size of one, then
r=o(N"1/3) .

Proof: Obvious.

' Theorem: The greatest number of arcs that N circles can cut
each other into is 2N(N-1).

Proof: Each pair, A & B, of circles can cut each other in
two places so however many arcs A had before B cut it, it
will have two more after. Each time A is cut, one more arc
is created. The same goes for B. Thus there are up to 4
new arcs per pair of circles and C(N,2) = (N choose 2) pairs
for a total for 2N(N-1l). (This proof is just of an upper
bound, but the bound is actually achieved.)

Theorem: The expected number of pairs of N circles that
will actually intersect (of the C(N,2) possible) is G(Nzrz).
Proof: A given circle, A, will be intersected by any other

2

circle <closer than 2r. This covers an area of 4pi*r“ (of a

total area of one). Thus a given pair of circles has a

{ THE HIDDEN SPHERE SPECIAL CASE 5-16
) STATISTICAL ANALYSIS

. probability e(rz) of intersecting, for a total of B(Nzrz).

: Corollary: The number of circles expected to 1intersect a

given circle is Q{N*rz).

| Given NG, the number of grid cells on a side of the screen,
the side of a grid cell is thus 1/NG. So the radius, r, of
a circle is r*NG times the size of a grid cell. Thus one
circle covers 9(1+r2NG2) cells. This is |H| in line 8
above. It can be kept constant if

NG = O(1/r).
Now there are N circles distributed among NG2 cells for an
average of n/NG2 circles centred in each cell. Thus in line
8 above,

lul = |8 N/NG?

= (1+r°nG?

) N/NG>
This is minimized when NG = Omega(l/r). Thus combining this
with the previous result,
NG = 6(1/r)
is optimal and gives
Ul = ©(N*r?)
Now line 9 above takes time |Ullog|U| every time it is

executed and it 1is excuted with G(Nzrz) arcs so its total

time is

THE HIDDEN SPHERE SPECIAL CASE 5-17
STATISTICAL ANALYSIS

7= o(N°rt)10g(n3rdy.
Since this is the slowest step in the algorithm, it is the

time for the whole algorithm.

Now under the assumption of constant density packing,
r=N"1/3

S0 T = 9(N5/3log(N))
= 9(X5/4log(X))

where X is the numberof circle intersections.

5.7 CHANGING THE ASSUMPTIONS

5.7.1 Different Sized Circles

Up to now the circles have been restricted to be the
same size. This means that the spheres must be the same
size and the projection isometric. However nothing in the
algorithm restricts them to be so. The problem is that with
varying size circles, the size 1is «correlated with the
distance from the viewpoiht and thus with the probability
that the circle is (partly) hidden. So the statistics
become much messier. There 1is no guarantee that the

algorithm will still run as fast because it depends on the

THE HIDDEN SPHERE SPECIAL CASE 5-18
CHANGING THE ASSUMPTIONS

farther spheres being mostly hidden. If the spheres are all
the same size but a true perspective projection is used, the
farther «circles will be smaller. Thus they will be even
more likely to be hidden and the algorithm shouldn’t be
slowed down. But if the original spheres are different

sized, things become very messy.

Also if the circle size varies, there is no longer such
a natural grid size. Above the grid cell size was chosen to
optimize the execution time of the algorithm. This might
not always be possible with varying size circles. Also
there wéuid no longer be a fixed neighbourhood of cells
whose circles and whose circles alone could overlap a given
cell. Probably cells would have to contain pointers to the
neighbouring circles that overlapped them and when a new big
circle was processed it would have to be added to the 1lists

of all the cells it covered.

THE HIDDEN SPHERE SPECIAL CASE 5-19
CHANGING THE ASSUMPTIONS

5.7.2 Ball And Stick Models

"Ball and stick" models, where the sticks are cylinders
connecting the spheres present further problems. 1In the
special case where the sticks are lines of zero width the
extension to the algorithm is easier since the sticks can
not hide spheres but can only be hidden. But if the sticks
have a finite width, they can hide spheres and each other.
Even the small arc of a circle at a stick’s end where it

? meets a sphere may be partially hidden.

5.8 SUMMARY

Thus it is possible to solve this special case of the
~ hidden spheres fairly quickly using the technique of the

{Tvariable grid. It would be preferable, nevertheless, to

3

_ bring the time down from ©(N°/>log(N)) to ©(8%/310g(N))

- since then it would be ©(X*log (X)) where X is the number of

_ intersections.

CHAPTER 6

CONVERTING VECTOR PLOTTER COMMANDS FOR RASTER DEVICES

6.1 INTRODUCTION

Many graphics plotters and display devices, both hard
copy and CRT, such as Tektronix, Calcomp and Milgo are
vector plotters. That is they draw edges between 2 given
points, although possibly in small increments. This is
usually the more natural and intuitive way of plotting.
However other display devices, such as Evans & Sutherland
PS-3, Ramtek, Gould, Xerox énd Versatec are raster. They
cover the screen in order from top to bottom with horizontal
gcan lines like a TV set. Orr [1978] <contains a good
summary of the various graphic display devices. Raster
display devices are becoming increasingly important because
they are better suited to shading, can use existing TV
technology and are supplied by torrents of raster data from

sources like Landsat. Although it 1is the prevailing

TR

CONVERTING VECTOR TO RASTER * G-d
INTRODUCTION

opinion, as stated by Negroponte [1977], that raster
graphics will soon supplant vector graphics, the latter will
survive for a few years yet, 1if only because of the
investment in existing equipment. Thus there is a need to

convert between these two totally different methods.

" This need probably exists in the short and mid term
only, since there is a prevailing trend to identify special
purpose functions that are used often and to implement them
in special hardware. At the rate the cost of hardware is
dropping, it will soon be cheaper to implement a conversion
chip and aisplay buffer right in the raster device than to
design an efficient algorithm to run on the host computer.
Nevertheless, even if such a raster plotter should be
announced tomorrow, there would remain 1large numbers of
raster plotters without such aids for several years to come.

Thus it is worthwhile to. develop these algorithms.

In this chapter, I analyze such algorithms for
converting commands intended for a vector plotter so that
they éan drive a raster display. I compare a variety of
different algorithms of varying complexity. Although there
are many existing heuristic algorithms, some of which have

been published, Jordan [1973] and Barret [1974], no

s

CONVERTING VECTOR TO RASTER 63
INTRODUCTION

systematic analysis has been published.

These algorithms assume a picture buffer of bits, one
per pixel, into which the edges are written. However, since
usually there is not enough internal memory to store the
whole buffer, it must be split into strips and only one
strip kept in memory at a time. Then there arises the
problem of whether to read each edge once while reading and

setting all the strips it falls in or whether to keep each

.strip in core once while reading the edge file several

times. A mixed strategy can also be used. The edges can be
kept whole or split. 1If they are spl%t, they may.be split
wherever they cross into a new strip or they may be split
into separate pixels. Curved edges might be handled
separately from straight edges, or they might not. In many
plots it 1is desirable to shade in areas. This is easy on
raster devices but must be done by rows of closely spaced
parallel 1lines on vector plotters. These crosshatch lines
have different statistics from normal lines in an average
plot since there are more of them and they are longer. Thus

the algorithms must be designed accordingly.

CONVERTING VECTOR TO RASTER
ASSUMPTIONS

6.2 ASSUMPTIONS

Assume that the screen is one by one.

Let

P = § bits on 1 side of the raster.page._

N = # plotter edges to draw.

L = total edge length, page widths.

B = # bits precision of the vector plotter, that is
number of bits needed to express one coordinate
point.

M = amount of internal memory available for data arrays,
bits;.

Q = average projected vertical length of an edge.

T = time, or egquivalently cost, for an algorithm to run.

S = # strips the raster screen is split into. These

the

of a

in

are

horizontal strips of height % running the whole width

of the screen. S depends on the actual algorithm used.

The strips will be described in more detail in the

section on algorithms.

Sample values might be:

CONVERTING VECTOR TO RASTER 6-5
ASSUMPTIONS '

= 2000 (Gould 5280 plotter/printer)
= 10000

100

= log P = 11

X W D B oy
n

= 1,000,000 (= 30K words on PDP-10).

6.2.1 Notes

1. These sample values depend greatly on the type of the
plot; and particularly on whether it is just a line drawing
or has croséhatch shading also. If so, then the total edge
length, L, 1is much greater. These values of N and L are
chosen to approximate a plot that is a 166 by 168 grid
covering the screen. Each line running across the plot is
not one but 10@ edges. This appears to be a sufficiently

complex plot to test the algorithms.

2. To make the numbers of bits easier to grasp, I shall
assume a 36 bit machine with 1RW = 1024 * 36 = 36864 bits.
This number of bits per word of course doesn’t affect the

calculations which are all reducible to numbers of bits.

CONVERTING VECTOR TO RASTER 6-6
ASSUMPTIONS

3. Simplifying assumption: Draw the edges 1 horizontal
raster bit wide if they are inclined at less then 45 degrees
to the horizontal and 1 vertical raster bit wide otherwise.
That 1is, an edge that is inclined at an angle of less than
45 degrees will cause only one bit to be set in each column
of raster bits that it passes through. 1In each row of
raster bits, it will cause one or more bits to be set. Make
no attempt here to give different slopes equal visual
density, that is equal density of raster dots per unit
length measured along the edge'instead of along an axis.

This should be done for aesthetic purposes, but is only a

constant factor harder and the methods are well known.
Thus # raster bits to set =0L*P = 200, 000.

4, LOG is to base 2 and LN to base e = 2.71828... Pi =

3.14159...

5. Definition: Edge: An edge between two endpoints as
drawn by a plotter or simulated on a raster display.

Definition: Line: A raster scan line.

CONVERTING VECTOR TO RASTER §]
ASSUMPTIONS '

6. Assume the edge angles of inclination are uniformly
2L

distributed. This makes Q = -; . The most 1likely
alternative is that the edges are hzlf horizontal and half
vertical but never oblique. Then Q = 2 . This assumption
only affects costs by a small constant and is only relevant
insofar as it might change a breakeven point between two
algorithms. But even here, the two algorithms would have to
be gquite <close in cost before this differentiated between

them.

7. Cost is generally dominated by the amount of I/0 and
everything not mentioned as a parameter above, such as
amount of temporary disk space and programmer time, is free.
Another significant factor that is not considered is the
number of different devices available for temporary storage.
If there are more disks available, then there is less
thrashing. Another factor is the relative cost of reading
blocks sequentially versus reading them randomly. It is
significantly cheaper to read ten consecutive blocks than to

read ten blocks scattered randomly over the disk.

CONVERTING VECTOR TO RASTER 6-8
ASSUMPTIONS

8. P has other reasonable values:

508 for a TV screen,
1088 for a Tektronix 40140,

4p08 for a Tektronix 4014.

6.3 ALGORITHMS FOR STRAIGHT EDGES

These algorithms illustrate different aspects of the

tradeoff between internal storage used and amount of I/O. A

given amount of memory can be used for different purposes.

The two opposite extremes for this are:

Store a page of raster bits in memory. Read the
edges one by one and for each edge set the

corresponding bits. Display the page.

Store all the edges in memory. Calculate a raster
scan line by checking all the edges and setting the
bits in the line for any edges that intersect it.

Write the line and calculate the next one. Display

CONVERTING VECTOR TO RASTER 6=9
ALGORITHMS FOR STRAIGHT EDGES

the lines in order on the device.

Since there is rarely enough memory for either limiting
approach, the following algorithms generally follow middle
paths. Since in general it is necessary to wuse all the
edges to calculate all the lines, two different approaches
are possible: to iterate through the edges in order, or to
iterate through the scan 1lines in order. We consider

various refinements of these two basic approaches.

These are all essentially sorting methods: the
difference lies in what is being sorted in what order. This
conclusion is similar to that which Sutherland, Sproull &

Schumacker [1974b] have found for hidden surface algorithms.

6.3.1 Iteration On The Edges

Define the display screen with a bit buffer of P2 bits.

If K < P2

then split the buffer into horizontal strips of M
bits. Have one strip in core at a time, and calculate which

bits are set in it by one of the following methods:

CONVERTING VECTOR TO RASTER 6-10
ALGORITHMS FOR STRAIGHT EDGES

6.3.1.1 Six Possible Algorithms -

1. Read the whole edge file for each strip. As each edge
is read, «calculate how much of the edge, if any, falls
within the strip, calculate which bits of the strip to set,
given the edge’s slope, and set them. When all the edges
have been processed, write the strip out, initialize the

memory for another strip and read the edge file again.

2. This algorithm is the same as algorithm 1, except ﬁhat
after it is determined how much of an edge falls within the
current strip, write out the remaining pieces, if any, to
another file. There will be either zero or one pieces,
depending on the relation between the edge and the strip. .
If the edge is totally within the strip then there will be
no pieces left over. If it is either completely outside the
strip or partly within the strip and partly within the next
strip, then there will be one piece. The most common case
occurs when the edge falls completely outside the strip.
Then when processing the next strip, read this file, which
should be shorter than the original edge file, and write
another even shorter file of pieces to be read for the next

strip, and so on.

Figure 6-1}+ Dividing the screen into strips

CONVERTING VECTOR TO RASTER 6-12
ALGORITHMS FOR STRAIGHT EDGES

In Figure 6-1, the screen is divided into four strips.
Edges 1 and 4 are completely used up when strip 1 is
calculated and so are not written. The parts of E2 and E3
poY - an Sl are written. 85, EG' E7, & E:8 are written

unchanged.

3. Presort the edges by the lower Y endpoint coordinate of
each edge. Then when processing a given strip, read the
edge file from the start, ignoring edges not at least partly
in the current strip, until the last edge that can possibly
be in the strip is read. This will be the edge before the
first edgei whose lowér Y endpoint is in the next higher
strip. Don’'t read the rest of the file. Thus when the
first strip is processed, not much of the file is read. For

each successive strip, more is read.

4. This is similar to algorithm 3, but does less reading of
the edge file. When the file is being read to do strip #i,
look at the edges and remember the location in the file of
the first edge that will fall within strip #i+l or a higher
strip. Then when strip #i+l1 is being formed, start reading
the edge file at that point. 1If the edge file is on tape,

do a fast forward, counting past blocks, to that point. 4

i3

CONVERTING VECTOR TO RASTER 6
ALGORITHMS FOR STRAIGHT EDGES

the file is on disk, do a random access to that point. 1In
either case, continue reading the file sequentially from

there.

There is one problem with this method: one 1long edge
at the beginning of the file that crosses all the strips
forces the whole file to be read for each strip. There are

two solutions to this problem:

1. Perform a preprocessing phase that splits all the
very long edges into manageable pieces. It is not
”necessary to split every edge that falls into two
strips, only the "long" ones. Exactly how long
this is would depend.on implementation details and

is a simple optimization problem.

2. Instead of only remembering the first edge that
falls within a 1later strip, chain together all
these edges, or else remember a 1list of them,
possibly by writing this to a separate file. Thus
if the marked edges are far apart, a series of
random accesses can be done without reading a long

string of useless edges between them.

CONVERTING VECTOR TO RASTER % 6-14
ALGORITHMS FOR STRAIGHT EDGES '

Again, the breakeven point between reading two edges by
random access versus reading all the edges between
sequentially depends on the relative costs of sequential and
random access. In the limiting case of writing out edges
that will be useful in the future; this method tends to
algorithm 2, except that this algorithm sorts the edges

first.

5. Initially read all the edges and write several files,
one for each strip of the raster screen, each containing the
pieces of the edges that fall within that strip. Edges that
cross a strip boundary are cut and the pieces written to two
or more files. To prevent disk thrashing, the different
files should probably be on different devices. Then
allocate the whole memory to the first strip, initialize it,
and read the first edge file and set the appropriate bits in _
the memory. When the first strip has been calculated, write

it and calculate the second strip, and so on.

6. Perform this algorithm like the above one but write all.
the pieces to one file, each piece tagged with the strip it
goes in. Then sort the file by strip number. Continue as

with algorithm 5, calculating one strip at a time, only here

CONVERTING VECTOR TO RASTER 6-15
ALGORITHMS FOR STRAIGHT EDGES
reading all the edge pieces from one file instead of from

different files.

6.3.1.2 Analysis Of The Algorithms -

Since external sorting is an integral part of all these
algorithms we need to know its performance. Knuth [1973]
sect 5.4.6 1lists several algorithms. Since we are
.presumably using disk, not tape 1I1/0, only the number of
passes through the file is material. The exact figure is
impossible. to calculate since it depends on too many
variable.br unknown factors. However, all the algorithms
have

P = § of passes

N*B
= ¢4 log(o 3 +cy)

That is, the number of passes depends on the number of times
bigger the file is than the workspace and not on the number
of records. Assuming that the file buffer space doesn’t
come out of M, or at least is a negligibly small fraction of
it, '

Cg =1

By * @ (assuming 3 way merging).

CONVERTING VECTOR TO RASTER 6-16
ALGORITHMS FOR STRAIGHT EDGES
Thus we can approximate the number of passes by

P = log(N) - log(M) + log(B)
and if the file is 2BN bits long,

T=2BNFP

= 2 B N (log(N) - log(M) + log(B))

This is in units where the cost of reading and writing 1 bit
i 1. Now assume that the memory is being used to store a

raster strip. Then

[12]
"

$# strips

2 7 *
ceil(P“/M)

4 with the sample values.

Now the probability that an edge crosses a strip boundary is

prob its centre is within g of a boundary.

~

0.00622 for the sample.

N~

*
ceil (x) is the smallest integer not smaller than x.

CONVERTING VECTOR TO RASTER 6-17
ALGORITHMS FOR STRAIGHT EDGES

Alternately, assume that the memory is being used to store

edges. Then the number of edges that can be in core at once
M

2B

= 44,000

Now it may be possible to store the edges more efficiently
and so pack more into memory. For instance, instead of
storing both endpoints, use the fact that the average edge
is 2@ raster pixels long and store the X and Y increments
instead of the second endpoint. Delta X and delta Y can be
. stored in about 5 bits each instead of the 11 bits needed by
each component of the second endpoint. This reduces the
space ngeaed for an edge from 44 bits to 32 bits and raises
the number of edges that can be stored in memory from 44,000
to 60,000. We <could even go &all the way and make a
preprocessing pass through the edge file for the sole
purpose of gathering statistics on the edges in order to
design an optimally tuned Hamming code. However here the
time to decode the edge’s coordinates might become

significant.

Algorithm 1 reads the whole edge file S times.
Assuming the average edge is small enough that relatively

few cross a strip boundary (for the sample this is 0.2%) and

L AARTTIIITIM TATA TYMAMAT™ Mm/a SR Ame e

% assuming the edges are evenly distributed, pass #i of

S=i+] S=1i
algorithm 2 reads =~ o of the edges and writes g Of them
s0 the whole file is read ig%;l times and written l§%ll

times for a total of S I/0 operations on each edge. This is
exactly the same cost as for algorithm 1 and so algorithm 2

need not be considered further.

These algorithms could be differentiated by various
secondary cost factors, however. For instance, some
operating systems might find it cheaper to write a block
than to read one since they can buffer it for a longer time
while qUeuing up several writing reguests before handling
them together. In this case, algorithm 2 would be cheaper

since it does writes where algorithm 1 does reads.

The cost for 1 or 2 is:

Cl = total number of bits read or written

2BRS

880,000 for the sample.

Algorithm 3 is like 2 except that only reading is done,
but the edges must be presorted. For the sample statistics,

where internal sorting is sufficient, the cost of sorting is

| CONVERTING VECTOR TO RASTER 6-19
ALGORITHMS FOR STRAIGHT EDGES

j:a*N*log(N), where a 1is the cost of sorting 1 record

W'internally. So

C3 = a*N*log(N) + 2B*N*(S+1)/2

= 90,000a + 550,000

This is the I/O required for 556K bits. But reading the
edge file once takes 2B*N = 220K bits so this requires the
equivalent of reading the edge file 2 1/2 times. In the
‘general case however, external sorting would be necessary,

80

4 |
"

cost of sorting + cost of reading

2*B*N* (log (N) - log (M) + log(B)) + z*B*Niggll

2*B*N*(log(N) - log(M) + log(B) + .

This method tends to be better than algorithm 1 when N is

small and S is larger.

Algorithm 4 cuts the extra edge file reading down to
essentially nothing if the edges are short. However the
simple algorithm becomes much worse if there are a few 1long
edges. The methods of handling this require either

preprocessing the edge file and splitting the long edges, or

CONVERTING VECTOR TO RASTER . 6-20
ALGORITHMS FOR STRAIGHT EDGES

writing another file 1listing the long edges, or at least
keeping some data in memory on the 1long edges. Here the
optimum choice 1is dictated by the frequency of the long

edges.

Algorithm 5 1is not recommended because of disk
thrashing and because every strip needs an output buffer in
memory. In primitive languages 1iké most implementations of
Fortran, buffer space and user arrays cannot be (legally)
equivalenced so the buffer space must remain allocated even
when it 1is no longer needed. Further there are limits on
how many open files there can be. Nevertheless in some
cases, Qhere the number of strips is small, this might be
useful. Especially for a very large complicated plot it
might be worthwhile to dedicate S output devices and use

this method.

Since as was shown before, few edges cross a strip
boundary, in algorithm 6, there are not many more pieces of
edges than edges themselves. Thus sorting the pie;es takes
no more time than sorting the edges themselves. After that
the edge file need be read just once. Indeed, since the

sorting need only be done by strip number. So once all

CONVERTING VECTOR TO RASTER | 6-21
ALGORITHMS FOR STRAIGHT EDGES

pieces for strip 1 are before any for strip 2 etc., the
sorting can be stopped since the order of edges within a
strip is immaterial. Although sorting N records completely
takes ©(N*log(N)) time, sorting to within S strips has an
information theoretic 1lower bound of ©(N*log(S)) time.
Ignoring this improvement, the cost is

C

6 2*B*N (log(N) - log(M) + log(B))
the same as the sorting cost in C3. Note that this sort,
like in algorithm 3, can be internal if the number of edges
is small enough. For small N it only reads the edge file
twice whi;e algorithm 1 reads it S times. For any value of
N, algorithm 3 reads the file as much as algorithm 6 to sort

the edges and then reads it ngll times more to do the plot.

So algorithm 3 is uniformly worse than algorithm 6.

Thus algorithm 6 is the best in this class of
algorithms that iterate over the edgés. For very large N,
algorithm 1, which reads the edge file S times will
eventually be better than algorithm 6 which reads it
G(N*IOQ{N)) times. For the sample values, the changeover is
above N = 5,000,000. How far above depends on statistics of
‘the external sorting algorithm which are too difficult to

calculate, among other reasons, because only an incomplete

CONVERTING VECTOR TO RASTER 6-22
ALGORITHMS FOR STRAIGHT EDGES

sort is being done. Thus for all reasonable plots,
algorithm 6 is best, especially since at the breakover point

there are so many edges that the plot is solid black.

6.3.2 Iteration On The Scan Lines

Assume that the scan lines are horizontal and run from

1 1
=- at the bottom in increments of - to y=1 at the top.

P
Define an active edge relative to a given scan line to be an

edge croésing the scan line. Let

V = average § of active edges

edges * component of average edge’s length

perpendicular to scan line

= N*Q

raster bits to set

o
n

L*p

Sample: V = 64
D = 200,000.

CONVERTING VECTOR TO RASTER 6-23
ALGORITHMS FOR STRAIGHT EDGES :

If there are few enough edges that they can all be in
core at once then store the edges sorted by their lower Y
coordinate in a linked list in core. Label the sorted edges
El' Eyr eo. Let the lower Y coordinate of E; be 1i and the
higher be hi. For the current scan line at any time, if it
is #k, its equation is y=§. Allocate it an array of P bits,
initially zero. Compare it against edges El to E; where 1
is the smallest integer such that 1i > E. No further edges
can intersect the scan line. For %1 to E; check where they
intersect the scan 1line and set the appropriate bit.
Further, if for any Ej, 1<=7j<=i, hj <= ;, then delete E. by

J

linking together E.

§af and Ej+

1.
6.3.2.2 Analysis -

This algorithm is useful because it only compares a
scan line against the line’ s active edges. An edge doesn’t
start to be tested wuntil the current scan 1line passes
through it and it 1is deleted as soon as the current scan
line rises above it. The problem of finding the
intersection of the scan line and the edge can be speeded by

storing with each active edge both where the last scan line

CONVERTING VECTOR TO RASTER 6-24
ALGORITHMS FOR STRAIGHT EDGES

intersected it and its slope. Then the next intersection
can be obtained by 1 addition. This algorithm is similar to
Watkins’ hidden surface algorithm, [1978] which also

compares edges agaimst scan lines.

Because of the 1link fields, the intersections and
slopes stored with each edge, far fewer edges can be stored
in core. Once external sorting is needed, the algorithm
runs much slower because it is impossible to effectively
delete an edge by linking the edge before to the edge after.
Since the deleted edge is still physically in the file, it
still must be read which is most of the cost. ﬁhile the
file could be randomly accessed to avoid this, the algorithm
would nevertheless run slowly since the input could no

longer be buffered.

CONVERTING VECTOR TO RASTER 6-25
ALGORITHMS FOR STRAIGHT EDGES

6.3.3 Sorting The Raster Bits

6.3.3.1 Algorithm 8 -

Scan through the edges calculating all raster bits they
set. Write this 1list of pixel numbers to a file and sort
them. Then the actual scan lines can be formed by reading

the file once.

6.3.3.2 Analysis -

The edges will cause to be set

L*P raster bits
= 200,000.

N

u = # raster bits that can be stored in core at any
time M

2 log (P)
= 45,454
d = cost of I/0 for] raster bit
= § data bits to describe 1 raster bit
= 2 log(P)
= 22
C cost of this sort

dN*(log(N) - log(u) =-.7)
3,500,000

i.e. the cost of I/0 for 95K words. Letting only L, the
total length, vary,

C = 44900 L (log(L) - 3.8)

CONVERTING VECTOR TO RASTER 6-26
ALGORITHMS FOR STRAIGHT EDGES

However the above results are for randomly ordered
raster bits. Since the average edge length is 20 raster
bits, pgesorting the edges before splitting them into raster
bits will reduce the sorting cost greatly. However once the
edges are presorted, this method becomes similar ‘to the
others, only slower because the others treat the edges as
edges and don 't split them up. When the edges are split
into pixels, the coherence information 1is lost. This
algorithm is worthless but it is surprising how 1little 1I/O
it takes. Evidently the coherence information is not as
valuable as we might have thought. The idea of writing and
sorting individual bits might be useful somewhere else,
perhaps for objects that rasterize into very complicated bit

patterns.

6.4 PLOTTING CURVED LINES

This case is impossible to analyze without having more
statistics on the likely plots but algorithm 6, dividing the

screen into strips and cutting the edges where they cross

CONVERTING VECTOR TO RASTER 6-27
PLOTTING CURVED LINES

the boundaries and sorting the pieces, should work
efficiently, provided we can intersect the boundary lines
between the strips against the curvéd edges quickly. This
intersection is simple for such common curves as conic
sections and cubic splines. Curves that are too complicated
to'split can be stored with every strip they pass through.
Then when .the raster bits are being calculated for some
strip, any bits outside that strip can be ignored. This
takes more time to calculate the bits but saves time
splitting the curves. As usual, the breakeven point depends
on various constants of the implementation such as
instructioﬁ times. -If as before the edges are short, not
many will «cross and for those that don't cross a simple

bounds check will suffice.

6.5 PLOTTING SHADED REGIONS

6.5.1 Shading By Crosshatch Lines

It is rather a waste to crosshatch shade regions on a
raster plotter when complete halftone facilities are
available but as this will happen when vector Dplotter

designed plots are converted, it should be considered. The

CONVERTING VECTOR TO RASTER 6-28
PLOTTING SHADED REGIONS

difference between a normal plot and one with a 1lot of
crosshatching is that in the latter there are many more
edges and they are longer. As for how the time depends on
the number of edges, N, algorithms 1-3 are ©(N) and
algorithm 6 is ©(N*log(N)). The edge length doesn’t affect
the algorithms until a significant number of the edges cross
a strip boundary, in which case all the algorithms run
slower. The exact amount is impossible to calculate since
it is totally dependent on the type of plot; e.g. bar
graph, geographic map, etc. It might be desirable for a
sophisticated algorithm to make one pass through the edge
file ohly to gather statistics which it would use to
fine-tune itself. 1In the limit where the plot 1is totally
covered with adjacent rasters, and the edges are
perpendicular to the strips (which is the worst case), every
edge <crosses 4 strips in the sample cése. Then algorithm 1
reads the edge file the same number of times while algorithm

6 reads it 4*log(4) = 5.5 times as much. However, this just

moves the crossover point down to somewhere above N

140,000. which is still a large plot.

CONVERTING VECTOR TO RASTER 6-29
PLOTTING SHADED REGIONS

Algorithm 7 can be applied to edges that are crosshatch
lines as well as to normal edges. Algorithm 8 will run very
much slower for polygons since there are so many more pixels
to write and sort. Nevertheless, for sufficiently complex

regions, this method might have a place.

6.5.2 Raster Shading

Raster shading means to store the polygon per se and to
calculate which bits to set when £he strip buffer of raster
line is being calculated. That is instead of calculating
the shading lines and using them as the entities in place of
the polygons. 1In this case, this same algorithms as before
are optimal. If the regions are small not many will be cut
by the strip boundaries, while if the regions are big enough
that many do «cross, unless they are long and thin there
cannot be very many of them so any method would work. In
algorithm 7, the polygons can be handled similarly to the
edges. The polygons can be sorted by minimum Y value, and
SO on. This method strongly resembles Watkins hidden

surface algorithm [1970].

CONVERTING VECTOR TO RASTER 6-30
PLOTTING SHADED REGIONS

When a region is being shaded on a strip in memory, any
shading algorithm - halftone, crosshatch, repeated symbols,
or whatever, can be used since the buffer can be filled with

any desired pattern of bits.

+6.6 SUMMARY

Thus the most powerful method (among those considered)
of converting vector plotter commands to a raster plotter is
"to divide the screen into strips, each strip being the
biggest that will fit into memory, read and split the edges

where they”cross the strip boundaries, sort them by strip

number and overwrite them on the strips in memory in turn.

For large complicated plots containing diverse
information such as straight 1lines, curves, and shaded
regions, the optimum strategy might well be to use different
algorithms on the different parts of the plot and then to
combine the results later, possibly by reading the bit
patterns resulting from the different parts, ORing them, and

plotting the result.

CHAPTER 7

SUMMARY & FUTURE DIRECTIONS

7.1 SUMMARY

In this thesis, we have considered various aspects of
the combinatorics of hidden surface algorithms, especially
as they agply to object space algorithms. We have seen that
object space algorithms are not necessarily as slow as they
have been generally considered to be and even for general
input scenes can run in time linear in the number of edge
intersections, provided that 1is Omega(N*log(N)). In two
special cases considered, algorithms have been demonstrated

5/3109{NJ) where N 1is

that run in time ©(N*log(N)) and & (N
the number of edges or circles in the input scene. Thus the
lack of attention that has been focussed on object space

algorithms in the last few years has been unjustified.

i
£

SUMMARY & FUTURE DIRECTIONS ' y

In spite of the rapid decrease in the cost of raster
display devices, object space algorithms retain some
advantages. Principally, they produce output that has
meaning. That is, they calculate lists of visible lines and
polygons. Instead of just having a set of ﬁixels of certain
colours, we have a database containing elements with
meanings. Thus the output can be .further processed. The
only way that raster output can be further processed is to

perform picture processing pattern recognition on it.

This distinction between object and image space
algorithms. is similar to a conteét‘currently being waged in
geographf between raster techniques and vector techniques
for storing cartographic and thematic data. The logical
operations "and" and "or" can be performed faster on raster
data and the data itself 1is supplied in raster form in
torrents from sources such as the Landsat satellites.
However the vector representation is much more compact and
more complex operations such as the polygon overlay problem,
as shown in White [1977], are easier with the vector form.
When viewed one way, the two methods are at opposite ends of
a continuum. Raster data has no meaning at all. Thus it is
so voluminous that it has to be compressed if it is to be

stored in a reasonable space. Compression is the act of

i.

SUMMARY & FUTURE DIRECTIONS 7=3

finding meaning in the data and using it to code more
efficiently. Vector encoding is the ultimate compression

that extracts all the meaning from the data.

7.2 FUTURE DIRECTIONS

7.2.1 More Special Cases

There are other important special cases to be

considered.

When a movie is produced, £he scene changes very little
from frame to frame, yet most of the hidden surface
calculations have to be repeated. Some algorithms such as
Schumacker ‘s flight simulation system [1969] take advantage
of the fact that the scene remains fixed and that only the
viewpoint changes, but this is only one aspect of what might
be done. What about small changes to the scene? If the
effect on the result is localized, the calculations should

be localized, also.

SUMMARY & FUTURE DIRECTIONS ; 7-4
7.2.1.2 Very Large Scenes -

Another special case is when the scene is very large.
Here, even an algorithm tunning in time linear in the size
of the input scene would run too slowly, so a hierarchical
method is necessary to quickly exclude large classes of
obviously invisible data. Some work has been done in this,
such as by Clark [1976b], but not much. An efficient
algorithm in this class could be used in a project such as
the Defense Mapping Agency’s ARTINS. This is an attempt to
"faizly completely_model an area of a few square miles while
including topographic data, thematic data, roads, symbols,
etc., Ietc; If hidden surface scenes are ever to be
generated in real time, as for instance would be seen during
a fly-by by a 1low altitude fast aircraft, much more

efficient algorithms will be needed.

Another problem here 1is that of automatic scaling.
That 1is, if we are observing a tree from a mile away, we
usually don’t want to see every leaf in the plot; a general
green blur is acceptable. On the other hand, if we are ten
feet away, we want to see all 16,000 leaves. This type of
operation of displaying only the required accuracy is

currently done better by image space algorithms. However,

ty

SUMMARY & FUTURE DIRECTIONS 7-5

an object space algorithm with a hierarchical database would
be worth investigating. One problg@ here is that although
each individual leaf is invisibly small, the ensemble of all
the leaves 1is quite wvisible. This effect must be

calculated.

This project contains many other related hidden surface
problems. For instance it is desired to represent an object
such as a church accurately if it is big enough to be
visible. Otherwise, it is desired to plot only a cross.
How should the choice be made efficiently? Also, assume
that the whole scene has a conceptually small change such as
a snowfall. This raises all the object tops a few inches,
and turns them white and fluffy. Is it necessary to

recalculate the whole scene because of this small change?

7.2.1.3 Inhomogeneities Within The Scenes -

Input scenes are not homogeneous, even though they are
often treated that way for simplicity. Faces may have
texture such as lettefing that it 1is better to store
explicitly instead of as a set of even smaller faces. The
scene may have a background such as the sky with clouds that

is it useful to handle separately. Both these special cases

SUMMARY & FUTURE DIRECTIONS - 7-6

have been handled separately by existing algorithms such as
Weiler [1977]; but surely there are others, and it might be
possible to develop a <classification of these different

types of scene components and form a general theory.

7.2.1.4 Computer Aided Design -

The art of designing curved shapes such as machine
parts and ship hulls interactively by computer is growing
fast. The user is generally not a. computer scientist and
only wishes to see the results of his efforts displayed as
quickly-as-possible. . So fast hidden surface algorithms
capable of handling curved surfaces are necessary. It is
desirable.that the scene have some meaning so that the user
can point to a point on the screen with a 1fght pen or

tablet and the computer will know what object he is

referring to.

7.2.1.5 Summal'y =

The point is that there has not been published any
general systematic analysis of the hidden surface problem

from a theoretical viewpoint. The only attempt to compare

SUMMARY & FUTURE DIRECTIONS 1=7

the different algorithms and to develop a general theory is
by Sutherland, Sproull & Schumacker [1974b], and while this
gives some previously unknown general principles (the
centrality of sorting, and the importance of coherence),
surely more can be done. Not much work has been done on the
hidden surface algorithms themselves recently since
attention has concentrated more on the shading which

dominates the hidden surface calculation time by far.

7.3 INTERACTIONS WITH THE REST OF COMPUTER SCIENCE

The hidden surface problem is not clean cut; it blends

continuously into much of the rest of computer science.

7.3.1 Computational Geometry

For instance, there surely would be useful
cross-fertilization between this and the work of Shamos
[1975a], [1975¢c], [1976a], [1976b], [1977b] on computational

*
geometry . For example, consider his algorithm to intersect

v There are three different meanings for computational
geometry. The meaning in this context is the application of
analysis of algorithms and computational complexity
techniques to algorithms in geometry such as finding closest
points, finding convex hulls, intersecting polyhedra, etc.
Classical geometers were satisfied with construction
techniques that gave the correct answer and were unconcerned
with efficiency, rating a technique by its elegance instead.

SUMMARY & FUTURE - DIRECTIONS 7-8

two convex polygons in linear time. If this could be

extended to convex polyhedra and even better concave

polyhedra, it would be directly useful.

7.3.2 Probabilistic Algorithms

Also the work by Rabin [1976] in probabilistic
algorithms might have applications. This is because the
goal in computer graphics is to produce realistic 1looking
"pictures and a great increase in overall realism would
probably be acceptable at the cost of occassional minor
errors. -After all, this the way the human eye and mind
operate: Various optimizations and shortcuts are taken that
improve overall vision but from time to time cause optical

illusions.

7.3.3 Relational Databases

Another bond between computer graphics and the rest of
computer science occurs in the field of databases. As was
mentioned in Chapter 3, various aspects of the hidden
sur face problem can be viewed as relational database

questions. One of these is that of determining which of a

SUMMARY & FUTURE DIRECTIONS -9

set SE={Ei} of edges intersect. This is equivalent to
finding records with common keys in certain fields. The
main difference 1is that here we are manipulating infinite
sets of records with a given key (all the points on an
edge) . However even' in certain finite databases with
millions of records, it might be wuseful to perform the
analysis wunder the assumption that there are an infinite

number.

7.3.4 Special Hardware

Even though hidden. surface algorithms perform large
amounts of calculations, these calculations are very
regular. Thus they are suited for arrays of processors.
Some work, for example by Fuchs [1977b], has been done in
patching. together the output from various processors, but
more can certainly be done. Since processors are getting
cheaper, this area will become more important. Of course,
there have been special purpose hidden surface calculation
machines such as by Evans & Sutherland, and Schumacker, fof

years.

SUMMARY & FUTURE DIRECTIONS 7-10

T.3.5 Summary

Thus there are many promising interdisiplinary
relations possible between hidden surface algorithms in
computer graphics and the rest of computer science that

should keep researchers occupied for years.

