A

SRR R

COMBINATORICS OF HIDDEN SURFACE ALGORITHMS

A Thesis presented
by
William Randolph Franklin

to

The Division of Applied Sciences
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy
in the subject of

Applied Mathematics
Harvard University
Cambridge, Massachusetts

May, 1978

Copyright, 1978, by Wm. Randolph Franklin.

All Rights reserved.

COMBINATORICS OF HIDDEN SURFACE ALGORITHMS i
PREFACE

PREFACE

I wish to thank Harry Lewis, my advisor, for forcing me
to think and write logically and rigourously and encouraging
me to finish. Tom Cheétham and Christos Papadimitriou, my
other readers, also provided valuable suggestions. I wish
to thank the members of the Lab for Computer Graphics and
Spatial Analysis in the Graduate School of Design at
Harvard, particularly Nicholas Chrisman and Denis White,
where I obtained valuable ideas and support while
implementing some of the algorithms described in this
thesis. Allan Schmidt and Breie Teicholz providad
encouragement and support during the years it took to get
useful results. This thesis was partly supported by work at

the Lab for Computer Graphics implementing the results.

COMBINATORICS OF HIDDEN SURFACE ALGORITHMS

PREFACE

He had bought a2 large map representing the sea,

Without the least vestige of land:

And the crew were much pleased when they found it to be

A map they could all understand.

"What ‘s the use of Mercator s North Poles and Equators,
Tropics, Zones and Meridian Lines?"
So the Bellman would cry and the crew would reply,

"They are merely conventional signs!.

"Other maps are such shapes with their islands and capes!
But we 've got out brave Captain to thank"
(So the crew would protest) "that he’s brought us the best ---

A perfect and absolute blank!"

Fit the Second,
The Hunting of the Snark,

Lewis Carroll

COMBINATORICS OF HIDDEN SURFACE ALGORITHMS
TABLE OF CONTENTS

2.

TABLE OF CONTENTS

PREFACE

TABLE OF CONTENTS
LIST OF FIGURES
NOTATION

SYNOPSIS

INTRODUCTION

1.1 The Hidden Surface Problem

1.2 The Prism-Map Special Case -
1.2.1 Shading

1.2.2 Statistical Analysis

The Hidden Sphere Special Case
General Principles

Vector to Raster Conversion
Summary

Appendices

¢ & s s @
SOy e W

STORY

1 Introduction

1.1 Terminology

1.2 Restrictions and Spec1al Cases
3 Curved Surfaces
4 Very Large Databases

1
2L
&
1
il
HI
2,

2.
Ze
2.3,
2 oss
2.2 The Perspective Projection
2.1 Normalizing the Projection
2.2 Inverted Perspective
2.3 Clipping the Scene
he Algorithms
1 Various Taxonomies
.2 Object Space Algorithms
2.3.2.1 A General Method
2.3.2.1.1 Edges
2.3.2.1.2 Pages
2+3edel.3 Piminig

2.3 T

2.3
2.3

2.3.2.2 Other Object Space Algorithms

2.3.3 Image Space Algorithms
2.3.4 List Priority Algorithms
2.3.5

Two and a Half Dimensional Algorithms

iii

13
133
vii

ix

"
(8

[S W
R T
~N OV s

|
H W~ U =W W % o

LS R SIS R NS S N N o
I

I
=
(=)]

COMBINATORICS OF HIDDEN SURFACE ALGORITHMS iv
TABLE OF CONTENTS

2.4 Output 2~37
2.4.1 Devices 2-37
2.4.2 Shading 2-38

2.5 Summary 2-49

3. A FAST OBJECT SPACE ALGORITHM 3-1
3.1 Introduction 3-1
3.2 Database Format 3-2
3.3 Statistical Assumptions 3-4
3.4 The Algorithm 3-1

3-1

3.4.1 Summary . -13 1
3.4.2 In Detail 3-14
3.4.3 Finding Edge Intersections 3=-22
3.4.3.1 Method 3-22
3.4.3.2 Notes 3-26
3.4.3. 3 Timing 3-27
3.4.4 Splitting the Edges Into Segments 3=31
3.4.5 Determining Visibility of Segments 3=-32
3.4.5.1 Introduction 3=-32
3.4.5.2 Algorithm 3-32
3.4.5.3 Timing , 3=35
3.4.6 Shading the Polygons 341
3.4.7 Overall Time 342
3.5 Implementation 343
4. THE PRISM-MAP SPECIAL CASE 4-1
4.1 Introduction 4-1
4.2 Algorithm 4-5
4.2.1 Definition 4-5
4.2.2 Basic Algorithm 4-5
4.2.3 Input 4=7
4.2.4 Normalization 4-7
4.2.5 EBirst Sort 4-7
4.2.6 The Partial Order 4-9
4.2.6.1 The Partial Order in 2-D 4-9
4.2.6.2 The Partial Order Extended into 3-D 4-12
4.2.6.3 The Simplified Algorithm 4-16
4.2.7 The Final Sort 4-16
4.2.7.1 Outline 4-16
4.2.7.2 The Scan Line 4-17
4.2.7.3 Detection of Ordering Violations 4-20
4.2.8 Making the Plot 4-24
4.2.9 Shading 4-29
4.2.9.1 Contour Lines 4-29
4.2.9.2 Vertical shading 4-38
4.2.9.3 Eilhouette Edges 4-35

COMBINATORICS OF HIDDEN SURFACE ALGORITHMS
TABLE OF CONTENTS

4.3 Statistical Analysis of Input Data
4.3.1 Theoretical Analysis
4.3.2 Heuristics

4.4 Resources Regquired by the Algorithm
4.4.1 Time
4.4.2 Storage

4.5 Implementation

HIDDEN SPHERE SPECIAL CASE

Introduction

Notation

Definitions

Assumptions

5.4.1 Accuracy of Assumptions

5.5 The Hidden Surface Algorithm
5.5.1 Perspective Projection
5.5.2 Schematic Algorithm

5.6 Statistical Analysis

5.7 Changing the Assumptions
5.7.1 Different Sized Circles
5. 7«2 Ball aond Stick Models

5.8 Summary

. m

wm U g
B W R

6. CONVERTING VECTOR PLOTTER COMMANDS FOR RASTER DEVICE
6.1 Introduction
6.2 Assumptiocns
6.2.1 Notes
6.3 Algorithms for Straight Edges
6.3.1 Iteration on the Edges
6.3.1.1 Six Possible Algorithms
6.3.1.2 Analysis of the Algorithms
6.3.2 Iteration on the Scan Lines
6.3.2.1 Algorithm 7
6.3.2.2 Analysis
6.3.3 Sorting the Raster Bits
6.3.3.1 Algorithm 8
6.3.2.2 Analysis
6.4 Plotting Curved Lines
6.5 Plotting Shaded Regions
6.5.1 Shading by Crosshatch Lines
6.5.2 Raster Shading
6.6 Summary

7. SUMMARY
7.1 Summary
7.2 Future Directiocons

00 3~ U1

Uitk i

Py ————G

COMEINATORICS OF HIDDEN SURFACE ALGORITHMS
TABLE OF CONTENTS

7.2.1 More Special Cases
7.2.1.1 Movies
7.2.1.2 Very Large Scenes
7.2.1.3 Inhomogeneities Within the Scenes
7.2.1.4 Computer Aided Design
7.2.1.5 Summary
7.3 Interactions With the Rest of Computer Science
7.3.1 Computational Geometry
7.3.2 Probabilistic Algorithms
7.3.3 Relational Databases
'7.3.4 Special Hardware
7.3.5 Summary

VIEWPLOT IMPLEMENTATION

A.1 Program Summary

A.2 Users’ Manual

A.3 Program Logic Manual .

PRISM-MAP IMPLEMENTATION

B.l Program Summary & Portfolio
B.2 Users’ Manual

B.3 Program Logic Manual
GLOSSARY

BIBLICGRAPHY

INDEX

vi
7=-3
7-3
7-4
7-5
7-6
7-6
7=
7-7
7-8
7-8
7-9
7-10

LI A | L |
~1 W

W wow :r!!’!b‘:!’
NN I SR P

o~

1

COMBINATORICS OF HIDDEN SURFACE ALGORITHMS
LIST OF FIGURES

LIST OF FIGURES

2-1 Perspective projection
2-2 Perspective projection transformed to an
orthogonal projection

2-3 Determining whether a point is in a polygon

3-1 Data structure for a cube showing vertices, edges,
and faces

3-2 Determining when two edges intersect

3-3 Deprojecting a projected eaée intersection to the
original 3-D edge

3-4 A face hiding a point

3-5 Disconnected planar graph causing overshading

3-6 Finding edge intersections with a variable grid

3-7 The number of grid cells hidden by a face

4-1 Base map of the USA

4-2 Prism-map of the USA showing estimated alcoholism
per 100,000 people by state, with vertical
shaéing

4-3 Simple polygon and the prism derived from it

4-4 Adjacent map edges doubling back on an edge

vii

2-12

2-12

2-27

4-3

4-6
4-19

COMBINATORICS OF HIDDEN SURFACE ALGORITHMS viti
LIST OF FIGURES

4-5 The hidden relation between map edges 4-10

4-6 Slicing a prism top by dropping lines from the

vertices between the top edges 4-13
4-7 Edges misordered after the first sort 4-18
4-8 Prism edges induced by one map edge 4-25
4-9 The horizon line in a partly completed plot 4-26

4-1¢ Prism map of public school expenditures in the USA,

by state, showing contour line shading 4-26
.4-11 Plotting a polygon and raising the horizon line 4-27
4-12 Perturbing shading spacing to smooth it 4-32

4-13 Silhouette edges of a prism 4-36

5-1 Three objects that cannot be ordered by distance 5~4

6-1 Dividing the screen into strips 6-11

COMBINATORICS OF HIDDEN SURFACE ALGORITHMS ix
NOTATION :

NOTATION

i. f(n) = Omega(g(n)) means that there exists a positive ¢

such that there exists Ny such that n>ng, => f(n) > c g(n).

2. f(n) = 0(g(n)) means that there exists a positive ¢ such

that there exists ng such that n>n‘a => f(n) < € g(n).

O(g(n)) and £(n) =

3. f(n) = 6(g(n)) means that f£(n)

Omega (g (n)) -

4. In the thesis, variables may be lowercase Or Uppercase.
Lowercase variables are always one letter 1long and soO
juxtaposition indicaes multiplication. Uppercase variable
names can be several letters long and so are separated by
‘#*‘ when multiplied. Notwithstanding the above point, a few
common multiletter lowercase variable and function names
such as ‘pi’ and “log’ are allowed. There should be no

confusion.

5. ‘log’ indicates logarithm to the base 2 apg “In’

indicates logarithm to the base 2.71828. ..

F HIDDEN SURFACE ALGORITHMS

COMBINATORICS O
NOTATION

6. = means approximatly equal.

SRR e A

i

COMBINATORICS OF HIDDEN SURFACE ALGORITHMS xi
SYNOPSIS ;

SYNOPSIS

This thesis analyzes various aspects of object space
hidden surface algorithms *. It builds on the classic work
of Sutherland, Sproull and Schumacker [1974b]. Three new
algorithms are presented and analyzed in order to exhibit
the implications of two general principles. The = firsE,

which . is new, is the concept of a variable grid. This is a

grid superimposed on the screen. As the scene gets more

complex, the grid gets finer.

*

An object space hidden surface algorithm calculates the
visible and hidden surfaces accurately to the arithmetic
precision of the machine. This is opposed to image space
algorithms which calculate the plot only to the precision of
the display device. Object space algorithms tend to be
suited for vector plotters and image space algorithms for
raster display devices.

CHAPTER 1

INTRODUCTION

1.1 THE HIDDEN -SURFACE PROBLEM

This thesis analyzes several aspects of the
combinatorics of the hidden surface problem in computer
graphics. Among the aspects considered are 1) The designing
of a faster object space algorithm, 2) analysis of the
efficiencies .obtainable by restricting the input data to
special cases, 3) shading of 3-D schematic plots to enhance
comprehensibility, and 4) analysis of the problem of
efficient conversion of vector plotter plots for a raster

plotter.

Chapter 2 summarizes the hidden surface problem which

is about 15 years old and gives its history.

INTRODUCTION 1-2
THE HIDDEN SURFACE PROBLEM

Existing hidden surface algorithms have been divided
into image space algorithms and object space algorithms by
Sutherland, Sproull & Schumacker [1974b]. The image space
methods work more directly on the plotter screen (in "image
space”) while the object space methods work more on the
objects 1in the scene (in "object space"). Consequently the.
image space algorithms calculate the plot only to the
resolution of the display device while the object space ones
generally calculate it exactly .(up to the arithmetic
precision of the machine performing the computations).
Since the image space algorithms produce 1less information,
they are generally considered to be inherently faster. 1In
fact all the object space algorithms that have been
discovered so far exhibit. very unfavourable asymptotic
growth in time while the image space algorithms that have

been discovered are far faster.

One of the results of this thesis 1is to refute the
hypothesis that object space algorithms necessarily perform
so slowly. Chapter 3 presents an object space algorithm
that on scenes containing X intersections of the projected
edges takes time O(X) .to calculate the hidden surfaces,

provided that X grows at least as fast as log(N), where N is

INTRODUCTION 1-3
THE HIDDEN SURFACE PROBLEM

the number of edges. Previous object space algorithms grew
faster than O(Nz). Thus the fact that object space
algorithms calculate more information does not require them
to run as slowly as the known algorithms do. I have
implemented part of this algorithm in a 12868 1line Fortran
program, VIEWPLOT. A program summary, user s manual and
detailed program logic manual are included as Appendix A of

this thesis.

The hidden surface problem carnot be given a simple,
crisp, mathematical definition in such a.way that algorithms
for it can be stated cleanly and elegantiy. The problem has
many aspects which interact in complex ways. Implementation
details always threaten to outrun victories won by
theoretically advantageous methods. The field of
applications is so broad that it is wuseful to consider
specialized subproblems. This not only allows these special
cases to be solved by more efficient algorithms but gives a
better feel for the general case. Indeed for every hidden
surface algorithm, there is a notion of what 1is the
reasonable or proper input on which it would execute
fastest. Each also has possible inputs on which it would

execute quite slowly. I consider two important specizal

INTRODUCTION :
THE HIDDEN SURFACE PROBLEM
cases in this thesis: prism maps in geography and ball

models of molecules in chemistry.

1.2 THE PRISM-MAP SPECIAL CASE

Geographers are: in the process of gradually
computerizing cartography. The first step is to digitize a
map. An operator pins the map on the bed of a digitizer and
then moves a handheld cursor, tracing along all the map’s
lines. Meanwhile the digitizer 1is continuously recording
the cursor’s position by writing its coordinates to a
mégnetic tape at intervals determined by some «criterion.
Possible «criteria to record z point are whenever the cursor
is moved .81 inch, every .81 seconds or whenever the
6perator steps on a foot pedazl. 1In any case, each border on
the map is approximated by a chain of short straight 1line
segments. If the chains represent boundaries, they
partition the map into polygons, and, in general, each chain

has a left and a right polygon.

Now assume a scalar attribute of the polygons of a map
for which each polygon has a value. For instance the

polygons might be states and the attribute per capita

INTRODUCTION - 1-5
THE PRISM-MAP SPECIAL CASE

alcohol 'consumption. Consider the map in the X-Y plane and
erect in the positive Z direction a prism on each polygon

with height being that polygon’s value of the attribute.

The result is a 3-D scene that can be processed by a
general purpose hidden surface algorithm. 1In fact the only
existing program for drawing such scenes, that by Waldo
Tobler [192?], does just this. But because the objects are
prisms instead of general polyhedra, a much faster algorithm
-is possible. 1Indeed most of the calculations can be done on
the input map without even knowing the prism heights. Once
the preprocessing 1is done, scenes with different relative
heights and shading can be plotted gquickly. I describe this
algorithm in chapter 4 and an implementation (summary,

users’ guide and program logic manuzal) in Appendix B.

*

A prism has a horizontal top &and bottom. The top 1is
congruent to and directly above the bottom which is a
general polygon that does not intersect itself. The prism

has a vertical rectangular side corresponding to each of the
polygon’s edges.

INTRODUCTION 1-6
THE PRISM-MAP SPECIAL CASE

12wl Shading

Various people, principally at the U. of Utah - Blinn
[1976], Crow [1976], 1[1977a),. and Phong [1975] - have
investigated how to shade the computer generated scenes.
They have made discoveries in the laws of reflection from
surfaces that are neither fully diffuse nor completely
specular, and produced output that is remarkably realistic,
involving highlights, shadows, and reflections of 1lighted
windows on the object. However, these methods use large
amounts of computer time. My goal 1is more modest: the
scenes being plotted have no physical existence but are
schematic. The purpose of shading them is not physical
correctness but the enhancement of comprehensibility - to
make it easier for a casual observer to take in the scene at
a glance. By way of analogy, note that it is easier to

learn to recognize a person from a skilled caricature than

from a photograph. The cartoon emphasizes the important
features while the photograph presents everything
impartially.

In chapter 4, I also consider a shading problem arising
from the prism plotting algorithm. This is the problem of

having the shading grade smoothly from a face to its

INTRODUCTION . 1=7
THE PRISM-MAP SPECIAL CASE

neighbour when they are not being shaded one directly after
another, the faces are smaller than the shading cross-hatch
spacing, and the shading algorithm is 1left partly

unspecified until plot time.

1.2.2 Statistical Analysis

To desién and analyze hidden surface problems properly,
it 1is necessary to know the statistical distribution of the
input data. This is a difficult problem, not least since
the algorithm will affect the distribution - people will use
a program more often on those problems that it handles best.
In designing the algorithms mentioned above, what I think
were reasonable assumptions were made. Of course others may

disagree.

One <case 1is analyzed more deeply, but is too
complicated to consider completely. This is the
distribution of chains in prism-maps arising from natural
geographic boundaries such as shorelines and rivers. It is
generally accepted that shorelines are scale independent -
that 1is that statistically an outline at a scale of 1 inch

to 1 mile is indistinguishable from one at a scale of 1 inch

INTRODUCTION | 1-8
THE PRISM-MAP SPECIAL CASE

to 1 foot. However the implications of this assumption are
vast, extending possibly even to the fractional dimension
curves described in Mandlebrot [1977]. There 1is a
complication caused by the fact that the original digitized
chains are rarely used since they are too detailed. 1Instead
they are "generalized" by the omission of points so as to
produce new chains that never deviate from the original
chains by more than some given error. The usual algorithm
as given in Douglas [1973], while fast, produces output that
"is no longer scale invariant. Some aspects of this

generalization problem are considered in Chapter 4, also.

1.3 THE HIDDEN SPHERE SPECIAL CASE

Chemistry students buy ball-&-stick kits to make and
study models of simple molecules. Professional chemists do
the same with more complex molecules like insulin in order
to better understand such problems as whether different
parts of the molecule are so close to one another as to
interfere. However the models are tedious to construct and
to change mechanically. The only extant algorithms for
computer generation of pictures of such molecules use BFI

(brute force and ignorance) number crunching. Chapter 5

INTRODUCTION 1-9
THE HIDDEN SPHERE SPECIAL CASE -

presents a faster algorithm for nonintersecting ball models
that takes time N*1log(N) under reasonable assumptions that

are detailed there.

1.4 GENERAL PRINCIPLES

These algorithms illustate the wusefulness of two

general principles. One, the variable grid, is used in the

general algorithm and in the hidden spheres problem. It is
"a new concept, borrowed from the "buckets" used in partial
match hash function retrieval, Rivest [1976]. The purpose
is to find quickly which of a set of elements such as edges

or spheres coincide.

The other principle is the utility of being able to
sort elements by whether or not one hides another. This
concept has Ibeen used before, for example in Newell’'s
algorithm. In that caée, objects sometimes had to be split
in order for such an ordering to exist.]l consider two
special cases, prism-maps and spheres, where the ordering

exists naturally and is easy to determine.

INTRODUCTION i-19¢
VECTOR TO RASTER CONVERSION

1.5 VECTOR TO RASTER CONVERSION

The algorithms I describe are designed for a vector
plotter, such as a Calcomp, Tektronix or Milgo. A primitive
step of a vector plotter is to draw a straight line between
two given points. However, many people, such as Negroponte
[1977], believe that the trend in applications 1is towards
raéter scan devices such as the Evans and Sutherland Picture
System 3, a TV monitor, an electrostatic printer/plotter
such as Versatec, Xerox or Gould, or an ink-jet plotter such
as Applicon. There are many programs to convert the point
pairs that comprise the vector plotter commands for a raster
pPlotter but they are not always efficient. 1In chapter 6 I
analyze the conversion proeblem to determine optimal
algorithms under different assumptions of the amount of main
memory available, number of 1lines drawn, total length of

those lines, and resolution of the raster device.

1.6 SUMMARY

The final chapter summarizes the thesis and describes

some of the related remeining open problems.

INTRODUCTION . ; 1-11
APPENDICES

1.7 APPENDICES

Appendix A describes the implementation of the faster
object space algorithm described in Chapter 3. There is a
quick summary of the program, an internal logic manual and a
users’ guide. This implementation also serves to illustrate
some of the problems that have kept the art of
implementation from becoming a science. Numerous messy
cases must be considered. The problems are exacerbated by
the finite precision of floatiné point numbers. This can
cause problems such as making a point near the border of a

polygon. appear to be inside or outside it depending in the

orientation of the axes.

Appendix B gives the implementation details of PRISM,

an implementation of the algorithm described in chapter 5.

CHAPTER 2

HISTORY

2.1 INTRODUCTION

Computer graphics is the branch of computer science
that deals with the manipulation of pictures and graphics by
computer. It is a relatively new field, even as computér
science goes, since it_.did not become practical until
computers became rather large and fast. As computing power
becomes cheaper, applications where constructs at a higher
level than simple .numbers are manipulated become more
important. Thus computer graphics is just one of the new
expanded applications oriented areas of computer science.
For a summary of where the field was only eleven vears ago,

see Skinner [1966], Sutherland [1966], and Coons [1966].

A computer can treat pictures in two supplementary
ways: It can take an existing picture such as a photograph

and extract the meaning from it. This is picture

HISTORY ; 2-2
INTRODUCTION - -

processing, and is not fﬁrther considered here. On the
other hand, the computer might be given the meaning or
intended content of a picture that does not yet exist and
create it. This includes, among other subjects such as
animation and computer assisted design (CAD), the hidden
surface problem. Some samples of recent work 1in CAD are
given in Crow [1977b] and Clark [1976a]. Braid [1975]
synthesizes solid cbjects from intersections and unions of
cubes, wedges, and cylinders. Parent [1977] gives the user
various natural "sculpture" tools for cutting, shaping, and
joining objects. Tanimoto [1977] gives another real time

editing technique for environments.

Various aspects of the hidden surface problem are the
subject of this thesis. The hidden surface problem concerns
the calculation of & picture of a scene composed of
translucent and opaque objects. Since the objects are
opaque, those that are in front hide those behind them. The
problem is to determine what is visible and what is hidden.
The problem has been attacked with varying degrees of
success for about fifteen vyears. Roberts [1963] had the

first known solution.

HISTORY 2-3
INTRODUCTION

The long term driving force behind this research is the
desire that concepts that are simple to think about should
be simple to manipulate by computer - this after all is what
the computer revolution 1is all about. Now it is easy to
imagine a scene such as a room with furniture and even easy
for an artist to sketch an outline of the scene. However
producing an exact photographic gquality painting of what an
observer would see can be quite difficult. his i»s
especially marked if there is significant perspective and
many objects with different 1levels of detail. If it is
desired to produce another drawing of the same scene from a
different angle, all the work must be repeated, even though
only a simple <change 1is being made. The problem is
analogous to that of producing machine code. Before high
level assemblers and compilers were invented, a conceptually
small change required recoding the whole program; now the
small change is made to the higher 1level source and the

compiler handles the bookkeeping of the changes.

This problem is illustrated in another way by the
difference between the difficulty of writing a story and the
difficulty of producing a movie. An author can set the mood

by sketching a scene with a few sentences; but a producer

HISTORY 2-4
INTRODUCTION

must build a million dollar set to achieve the same effect.
Computer graphics aims eventually to lessen this disparity
by allowing nontechnical wusers to handle such pictures
intuitively. A good survey paper of the progress in realism

of computer generated images is Newell [1977].

A good general reference on computer graphics and
hidden surface algorithms 1is Newman & Sproull [1973].
Rogers & Adams [1976] is another ggperal work on graphics
techniques and projections. The canonical paper on hidden
surface algorithms is_ Sutherland, Sproull & Schumacker
[1874b]. Pooch [1976] has a large bibliography on computer
graphics in Igeneral and Orr [1978] describes different
graphic output devices. The analysis of the algorithms
requires techniques 1in geometrical probability such as
described in three recent survey papers by Moran [1966],
[1969] and Little [1974]. Donath [1968] shows more useful
geometric statistics. Melzak [1973] contains many practical
techniques and tricks for solving geometric problems such as
can arise in analyzing the behaviour of hidden surface
algorithms. There are also relationships between some of
the concepts in hidden surface algorithms and recent work in

databases such as partial matching by Rivest [1976], [1974].

HISTORY 2-5
INTRODUCTION

2.1.1 Terminology

Different authors in the field tend to use different
terminology, if only because they are addressing different
aspects of the problem. The terminology here is chosen to
facilitate the presentation of this thesis. Only
terminology pertinent to more than one chapter is given here
- words of only localized use are defined in the individual

chapters.

The scene is the ensemble of three dimensional objects
being plotted. In an aircraft flight simulator, it is the
airport, other planes and surrounding landscape. In a view
of the city, it is the buildings and vehicles. Depending on
the scale, it may include windows and individual rooms of
the buildings. In the PRISM-MAP algorithm given in chapter
4, it is the set of prisms. For convenience, the scene can
be divided into objects. An object has no formal definition
but is just one conceptual part of a scene. If the scene is
composed of only straight lines and flat planes then it has

vertices, edges, and faces. A vertex 1is a 3-D cartesian

peint. An edge 1is @& straight 1line segment between two
vertices. A face is a flat polygon 1in _3-space that . is

defineé by the ordered list of its vertices.

HISTORY 2-6
INTRODUCTION '

2.1.2 Restrictions And Special Cases

Since producing a computer generated picture of a
complicated scene containing shadows, highlights, internal
reflections, refractions and translucent objects is even now
impossible, various workers have restricted the set of
allowable scenes with which they worked. The early
algorithms generally required the scenes to contain only
straight lines and flat planes. All the objects were opaque
and shading, shadows and highlights were not even
considered. Even the flat faced objects were restricted by
requiring them to be closed convex polyhedra. Sometimes the
polyhedra were required to obey a partial ordering where the
relation was whether one hid another as seen from the
viewpoint. However if there were violations, then the
offending polygons could be split until there was a partial
order. Generally polyhedra are not allowed to intersect or
cut through each other since this complicates calculations

considerably.

HISTORY 2-7
INTRODUCTION

2.1.3 Curved Surfaces

When algorithms allow the scene to contain curved
surfaces, they have to model the curves somehow. Thus this
is closely related to CAD (Computer Assisted Design) which
models 3-D objects. One method 1is to provide a menu of
stock objects such as spheres and cylinders and allow the
user to compose a scene of these pieces, possibly with
pieces cut off by intersecting planes. In other cases,
general curves with many parameters are used. One favorite

is the cubic spline which is extended into three dimensions

as the patch. A cubic spline is a method of interpolating a
smooth functional curve through a set of points (xi, Yi)-
Between any consecutive pair of points the curve is a cubic
polynomial and the two polynomials that meet at every point
except the endpoints are related by continuity conditions -
they have the same value and first derivative. Splines can
be extended into 3-D by dividing the surface of an object
into patches and using a separate function on each area.
Another popular class of patch functions is the set of conic
functions which gives rise to guadric patches. A guadric
patch is a surface satisfying the equation:

Qix,v,z) = alx2+a2y2+a3z2+blxy+b2yz+b3xz+clx+c2y+c3z+d

HISTORY 2-8
INTRODUCTION

Greville [1969] is a general theoretical mathematical
book on splines. Cline [1974] considers something called
splines under tension. If the spline is considered to be
made of rubber, this models a tension applied to the ends
and has the effect of reducing the curves. Manning
considers the use of splines in modelling. Gordon [1974]
considers the case where smoothness is more desired than
accuracy. For this he uses B-splines which are composed of
Bernstein polynomials. They converge very slowly but are
guite smooth. Pavlidis [1976] considers the problem of
piecewise approximations to a function where the number of
pieces 1is changed by splitting and merging. At Cornell, Wu
[1977], has an interactive approach to modelling curved
surfaces by interpolating Cardinal splines between lofts
composed of B-splines. Brewer [1977] has an interactive
surface design system that uses points on the surface

instead of parametric curves.

Woon [1972] at Rensselaer has designed an algorithm and
Potmesil [1977] has implemented it 1in a program called
QUADRAW. QUADRAW solves for hidden surfaces where the

surfaces are quadric patches. However it requires the user

HISTORY 2-9
INTRODUCTION

to enter 1) the explicit equations of the surfaces 2) the
equations of the intersections and boundaries of the
surfaces and 3) the coordinates of the points where 3 or
more surfaces meet. In the next version, however, these

intersections will be calculated automatically.

Catmull [1974] wuses hierarchical subdivisions to

display curved surfaces.

Freeman [1974] is a good survey paper that discusses,
among other matters, different ways of efficiently encoding
curved lines. Burton [1977] gives a method of representing
chains of many short 1lines such as might approximate a

geographic boundary.

Levin [1976] considers objects composed of quadric
surfaces and how to calculate the intersections of the
surfaces. However his hidden surface algorithm simply uses

brute force.

2.1.4 Very Large Databases

As a scene comes to represent a conceptual picture with

ever greater accuracy, it begins to contain more and more

HISTORY 2-19
INTRODUCTION

data that are almost never used. For instance, if a city is
modelled to a sufficient accuracy that the paperclips on a
desk in a room in a building are included, then the volume
of data will be enormous and no possible way of looking at
the scene will ever use more than a small fraction of it.
For instance a bird’s eye view of the city will be unable to
see anything inside the buildings except what 1is close to
the windows and even that will be too small to be resolved.
On the other hand, an observer 1looking at a room in a
building from <close up Qill be wunable to see anything
outside his particular room. To handle this special case of
extreme generality, hierarchical databases are used. This
technique allows whole large groups of irrelevent date to be
excluded in one step éo that the algorithm can spend its
time analyzing the data that is more likely to be wvisible.

Clark [1976b] considers hierarchical databases.

Fuchs [1977b] considers another special case, that
where the computation of the hidden surfaces is distributed
over many processors. He finds that this can be done and

the separate results pieced together efficiently.

HISTORY 2-11
THE PERSPECTIVE PROJECTION

. 2.2 THE PERSPECTIVE PROJECTION

The scene is being viewed in perspective projection.

This is a means of mapping the 3-D scene into a 2-D plotter
drawing. This is what is done in an ideal camera, assuming
that a wide-angle or fisheye 1lense is not wused. The
projection is defined by a2 viewpoint which is a point in

3-space defined by its coordinates and a perspective plane.

The perspective plane is a plane in 3-space that is most

conveniently defined by its centerpoint or the point on the

perspective plane closest to the viewpoint. A vector from
the centerpoint to the viewpoint is normal to the
perspective plane, that is, is perpendicular to any line in
the plane. Straight 1lines of sight are extended from the
viewpoint through the perspective plane to the points of the
scene. Any -given point of the scene is projected to the
point where its line of sight intersects the perspective
plane. Since straight 1lines in the scene project to
straight lines on the perspective plane,.it is sufficient to
project the endpoints of any edge in the scene and then draw
the projected line between the projected endpoints. The

perspective projection is shown in Figure 2-1.

Figure 2-1: Perspective projection

Figure 2-2: Perspective projection transformed to an
orthcgonal projection

HISTORY 2-13
THE PERSPECTIVE PROJECTION

There are various special cases of this general

projection, which 1is also called a three point projection.

For example, the viewpoint might be at infinity, in which
case the lines of sight are parallel. When the viewpoint is
at infinity, it can be conveniently defined by the direction
cosines of a ray from the origin towards it. This is called

an orthogonal projection or an isometric projection. There

are also two in-between projections: one point projection

and two point projection. Here the lines of sight converge

in only one or two directions and remain parallel in the
remaining direction(s). This is eguivalent to having one or
two, respectively, of the coordinates of the viewpoint being
finite and the other two or one of the three infinite. If a
coordinate is zero, it can be considered either finite or
infinite. Architects and designers treat these as four
separate cases of different projections although

mathematically they are essentially identical.

2.2.1 Normalizing The Projection

It is convenient to bring the scene to & standard
projection so that viewpoint and centerpoint do not have to

be brought explicitly into every calculation. The goal is

(]
I

HISTORY 14

THE PERSPECTIVE PROJECTION

an orthogonal projection with the perspective plane’s
equation Z=@ and the viewpoint at (8,0,infinity). In this
case the point (x,y,z) is projected to (x,y) which is a
simple operation. Further, the 2Z coordinate of a point
expresses its distance from the viewpoint: a higher Z means
the point is closer. Since the viewpoint is an infinite
distance away, we are dealing with different infinite
quantities differing by @a finite gquantity, but this
arithmetic can be rigourously and .consistently axiomatized,
should it ever prove necessary. If the projection 1is
already orthogonal, the scene need only be rotated to make
the vieﬁpoint correct. No shifting is necessary since all

projection planes Z=c for any c are equivalent.

However the case where the initiecl projection is three
point is a little more complicated. Assume that the initial
viewpoint is V and the centerpoint C. A rotation of the
scene followed by & dilatation (or scaling) can make
v=(0,06,0) and C=(98,0,1). Then the following transformation

will convert the projection to an orthogonal projection:

X = ¥X/%

!
"

Y/2Z

HISTORY : 2-15
THE PERSPECTIVE PROJECTION

2 = 1/32

This transformation is applied to every point of the scene
to produce a transformed scene. Now the original scene
projected with the original V and C will produce the same
result on the perspective plane as the transformed scene
projected with the new viewpoint V=(8,8,infinity) and
centerpoint C=(8,0,0). This is just the standard orthogonal
projection mentioned above. This transformation preserves
straight lines and flat planes; otherwise it would be rather
useless. Hence it 1is necessary to transform only the
endpoints of any straight edge and only the vertices of any
flat polygon, and then draw the projected line or polygen on
the perspective plane between the projected points. This
transformation, 1like @all perspective transformations in
projective geometry, transforms conics to conics, so that
one class of curved objects is handled as well. Figure 2-2
shows the transformation of the perspective projection of

Figure 2-1 to an orthogonal projection.

This transformation has the property of reversing the
sense or parity ¢f a scene so that & richt handed coordinate

system becomes a left handed one. Some algorithms depend on

HISTORY 2-16
THE PERSPECTIVE PROJECTION

the parity of the scene. For these & reflection can be

applied to the scene to restore the parity.

One point and two point perspectives can be normalized

by similar technigues.

2.2.2 Inverted Perspective

It is sometimes convenient to use an inverted

perspective where the viewpoint 1is farther away than

infinity. Hence the lines of sight diverge as they approach
the horizon instead of converging. This means.that nearer
objects are smaller than distant objects with the result
that more of the scene is visible. A'normalized perspective
projection can be transformed to & normalized orthogonal

projection thus:

X 3/
Y = Y/%
z2’ =-1/%

Unlike the previous transformation, this one doesn’t reverse

the parity of the scene.

HISTORY . 2=17
THE PERSPECTIVE PROJECTION

2.2.3 Clipping The Scene

Continuing the analogy with a camera, it 1is usually
desirable to show only those parts of the scene that fall
within a given square on the perspective plane. If the
viewpoint 1is inside the scene then even though the parts of
the scene behind the viewpoint also project onto the
perspective plane, they should never be shown. The
operation of removing the parts that are not to be shown is
called clipping. The parts of the scene that project to a
square on the perspective plane centered on the centerpoint
are ‘those within a certain square cone in 3-space in the
original scene. The interior of this cone satisfies the
inequalities:

abs(X) < c Z

abs(Y) < c Z

2 > 8.
The constant ¢ determines how big the square on the
perspective plane is. This sgquare cone transforms to a
semi-infinite rectangular solid when the projection is made
orthogonal. 1Its equation is:

abs(X) < 4

abs(Y) < d

HISTORY - 2-18
THE PERSPECTIVE PROJECTION

£> 5
for some d. Hence it is easier to clip the scene after it
has been transformed. Jarvis [1975]) gives two algorithms
for clipping which exploit the hardware of the PDP-9 and
PDP-11 to run vwvery fast. One of them does not use even

multiplication or division.

2.3 ALGORITHMS

2.3.1 Various Taxonomies

There are many hidden surface algorithms that are more
or 1less closely related to each other and they have been

classified in various ways.

One such taxonomy is due to Myer [1975]. It is:
I. Realistic
A. Fast
1. Clever
2. Industrious
B. Easy
C. Accurate
D. Compatible

1. Bymbelic

-HISTORY 2-19
ALGORITHMS ;

A. Contours

B. Isograms
Realistic algorithms model real scenes as opposed to
symbolic algorithms which .display data such as contours
graphically. Fast algorithms are designed for real time and
are either smart or efficient. Easy algorithms use brute
force and ignorance. Accurate algorithms concentrate on
realistic shading. Compatible algorithms are utilities that
are used by another program and which are only required to
work, not to work very well. He also divides scenes into
direct and indirect depending on whether they are models of

reality or models of models of reality.

Another classification, which the the one most commonly
used, is due to Sutherland, Sproull & Schumacker [1974b].

Here the class of algorithms is divided 1into object space

algorithms, image space algorithms and 1list priority

algorithms.

This paper by Sutherland, Sproull & Schumacker is an
impoftant summary of progress in hidden surface algorithms
up to until about five years ago. It gives a history of the
subject and briefly describes the important algorithms. The

algorithms are classified according to how they sort the

HISTORY 2-20
ALGORITHMS

input data since they propose sorting as the fundamental
means of differentiating among the algorithms. all
algorithms sort the data along & scan 1line (the X
direction), by scan line number (Y) and in distance (Z).
They also propose that coherence is a prime property of
scenes that all efficient algorithms use. Coherence means
that the scene changes very little as some parameter varies
slowly. For instance the set of edges whose projections
intersect a scan 1line 1is almost the same as the set
intersecting the adjacent scan line. In an aircraft £flight
simulator, as the viewpoint changes, the relationships in
the scene such as which faces hide which faces change slowly
and smoothly. Because of their.systematic classification,
they are able to suggest new approaches that no one seems to

have tried.

Object space algorithms take a part of the scene such
as an edge or face and determine whether or not is is
visible. They operate to the precision of the CPU and if
the resulting picture could be plotted to a greater
resolution than the particular display device happens to
provide, it would still be accurate. Since the results are

the visible pieces of the edges and faces, edge by edge and

HISTORY 2-21
ALGORITHMS

face by face, the natural output plotters are vector
plotters. Since raster technology is becoming more
important, Negroponte [1977], 1in Chapter 6 I analyze
efficient algorithms to convert vecﬁor output for raster

devices.

In contrast, image space algorithms iterate over the
pixels* of the screen and determine how to colour each one.
They calculate only to the accuracy of the device and if a
new display with greater resolution were wused, more
calculations would be needed. These algorithms are
naturally compatible with raster scan devices. The list
priority algorithms fall in the middle since they do some of
their processing in object space but finish in image space
and calculate the picture only to the precision of the

display device.

*

A pixel is the smallest addressable part of a raster
screen. It 1is displayed as one dot of light that has the
attributes of intensity or brightness, and in colour
devices, hue and saturation. ;

HISTORY 2-22
ALGORITHMS .

fince image space algorithms calculate the plot only to
the necessary precision while object space algorithms do so
exactly (to the machine’s limits), there is an impression
that the latter are inherently much slower. 1In chapter 3, I

show by counterexample that this is not invariably true.

2.3.2 Object Space Algorithms

First I describe a general method for object space
slgorithms that is a mixture of various published algorithms

and then I describe various published algorithms.

2.3,2.1 General Method -

2.3020101 Edges o

Whether or nct an edge 1is hidden 1is determined by
whether or not there are any faces hiding it. An edge, E,
from the set of edges SEs{Ei}, changes its visibility when
it goes behind, or comes out from behind, =z fa&e from the
set of faces SF={Fi}. This occurs when it crosses &z face

boundary, which is when it crosses another edge since these

HISTORY _ 2-23
ALGORITEMS

algorithms either reguire the face boundaries to be in the
edge database, or <calculate them and insert them there.
Thus if E is partitioned into a set SS={Si} of edge segments
by the places where E intersects all the other edges in SE
then each segment S; in SS is either tctally visible or else

totally hidden.

In more detail: Let E be projected into edge E’ on the

perspective plane. Let another edge E2 be projected into

edge EZ'. Assume that E’° and Ez‘ intersect at point Q on

the plane. Since Q is on E° it is the projection of some
point Ron E. R is the point at which another segment, S,
will be cut off E. It is sufficient to take one point P
(say the centre) of S and test it against all the faces F in
SF. If any F hides P then S is hidden; otherwise S is

visible.

Thus the naive algorithm is:

8% <~ {};
REPEAT for al1 E in SE
SX <- {intersections of projection of E with projections
of other edges in SE};
SX <- Sort(SX along projection of E);
SS <- {segments into which projection of E is cut by
members of SXj:
REPEAT for all S in SS
P <- Midpoint(S);
Flag <- TRUE;

24

HISTORY 2
ALGORITHMS

REPEAT for all F in SF
IF Hides(F,P)
THEN Flag <- FALSE;
ENDREPEAT;
IF Flag
THEN
Plot (S);
Addelement (SV,S);
ENDIF;
ENDREPEAT;
ENDREPEAT;

HideS(Face,Point) is a routine that returns a flag
saying whether a face hides a point.
- Addelement (Set,Element) adds an element to a set. The set

of visible segments is accumulated in SV for later use.

2.3.2.1.2 Pares =

The above algorithm determines the visible edges ("the
hidden 1line problem"); now we must determine the visible
faces ("the hidden surface problem"). A given face, F, can
be either totally hidden or can have one or more visible
connected polygons on the plot. However these polygons are
delimited by the visible segments in SV. These segments

determine a planar graph and partition the plane into a set

of polygons SR={R;}-

HISTORY 2-25
ALGORITEMS

Given the set of NVIS visible edges, where the only

attributes of each edge are the coordinates of its two

endpoints, the explicit polygons in the partition can be

determined thus:

1) Sort the edges by endpoint so as to iéentify the
common endpoints of the different edges.

2) For each point, make a list of the edges ending on
that point.

3) It is necessary tha£ the graph be connected since
otherwise there may be one connected component subgraph
inside a polygon of another subgraph. If that outside
polygon does not know about the subgraph inside it,
then when the outside polygon is shaded, the shading
will cover the inside component and all its faces also,
as shown in Figure 3-5. This is erroneous. So pick a
point and traverse these lists to determine whether the
graph is connected. If not, add edges between the
disconnected components to connect it. As each edge is
added, test it against all other edges to see whether
it intersects them and if so add 2 new point at the
intersection and replace the two edges by four edges.

4) Sort the edges by angle around each point.

HISTORY 2-26
ALGORITHMS

5) Pick an edge at random and follow from edge to point
to edge always turning in one direction until back at
the starting edge. This finds one polygon. Each edge
will eventually be traversed exactly once in each
direction so as each edge is traversed, mark it used in
that direction.

6) Pick an unused (in one direction at least) edge, if
any remain, and repeat step 5.

7) The result of this will be a set of polygons, one of
which will be the external polygon around the outside
of the whole graph. 1Identify it by its signed area

which will be negative and delete it.

Because of step 3 above, this algorithm takes time
e(NVISZ) in the worst case. However the expected time seems
to be dominated by the sorting stage so it is
© (NVIS*1log (NVIS)). This is because in practice the graph is

almost always connected.

Now each polygon, R, of the graph corresponds to one
face. Tthe converse may be false since one face may have
several polygons if its visible region is split by another
face in front. So it is sufficient to take a peint, P, in R

and test it against all faces in SF. It is not so easy to

HISTORY 2-28
ALGORITHMS

find P as before with the edges. This is because if R is
not convex, then the centroid of R, or the centre of its
enclosing box, may be outside R. Generally either of these
points will be inside R, so it is worthwhile to test such a
point first with a point-in-polygon routine such as shown in
Figure 2-3. This algorithm draws a semi-infinite ray up
from the point and counts the number of intersections with
the sides of the polygon. If this number is even, the point
is outside, and if odd then it is inside. The only tricky
special case is if the ray goes through the vertex; then 1it-
must be determined whether the ray is passing through or
just grazing the polygon’s perimeter. Pl is inside the
polygon since its ray cuts the polygon three time but P2 is
outside. This algorithm takes linear time in the polygon’s
size which is adequate. The multiplicative constant in the
time is also very small so that 'it is not only good
asymptotically but also good for small polygons in actual
implementations. There are also faster algorithms using
Voronoi polygon nets that take time ©6(log(N = number of
edges in polygon)) to test a given point, provided there 1is

©(N*log (N)) time to preprocess it.

HISTORY ' 2-29
ALGORITHMS

Nevertheless we need some other points in case the
centroid 1is outside. Luckily, if all nonadjacent vertices
in the boundary of R are joined by lines and the midpoints
of those 1lines are found, then at least one such midpoint

will be inside R.

2.3.2.1.3 Timing =

If there are N edges, it takes time G(Nz) to find the
intersections. Under certain statistical assumptions
detailed in chapter 3, there will be B(N4/3) intersections.
Comparing each of these against all the ©(N) faces takes
time 9(N7/3}. The exact time depends on the statistical
assumptions but is Omega(Nz) even 1f there are .no
intersections (since every pair of edges must =still be

compared) and Omega(NBJ if every pair of edges intersects.

2.3.2.2 Other Object Space Algorithms -

Some algorithms, such as those by Appel [1967].,
Galimberti [1969], and Loutrel [1967] and [1978] employ

additional refinements. For instance, if there are N faces

HISTORY 2-39
ALGORITHMS

hiding edge E at some point and E crosses another edge, E,,
then E is now hidden by N+l or N-1 faces. Therefore if N is
large enough, there is no need to determine the visibility
of this segment of E; we know it must be hidden. We can
thus propagate the minimum number of faces hiding an edge
segment and only actually check the segment when this falls
to zero or below. We can also propagate it across vertices
since all the edge segments incident on one vertex will in

general be hidden by the same faces.

However this refinement has problems that render it
problematical whether it is really an improvement. First it
is no longer sufficient to determine whether an edge segment
is visible or hidden; we must also know by how many faces it
is hidden. In 1large scenes, this takes much longer.
Second, there are many messy special cases to consider,
especially when propagating through a vertex to another
edge. If a third edge should run through the vertex then
the number of faces hiding the first segment will change
without the segment - intersecting anything (unless being

adjacent on an end is considered to be an intersection).

HISTORY - 2-31
ALGORITHMS

The Loutrel algorithm [1976] restricts the scene to be
composed of polyhedra, convex or concave. An implementation
by Potmesil in 1976, [1976], allows the faces to have holes.
It uses a complicated data structure, requiring about 50
words per vertex storage and is implemented on a CDC-660880.
The asymptotic time growth is not given but the time

required seems to grow rapidly with the scene complexity.

2.3.3 Image Space Algorithms

These algorithms are generally suited to raster
devices. They ask what should be drawn at given points on
the screen instead of asking how a given part of the scene
should be drawn. Here is just a brief summary, including

some of the more interesting implementations.

Warnock’s algorithm [1969] and [19780] proceeds
recursively on the screen and the faces that cover parts of
it. It asks if the situation is too complex to draw, and if
so splits the rectangle into two smaller ones. It puts each
face into that rectangle or rectangles with which it has
nonempty intersections. This process of subdivision is

repeated until it is easy to see how to shade the rectangle,

HISTORY 2-32
ALGORITHMS

or until the rectangle is smaller than a pixel. 1In fact
this can be continued until the rectangle is one gquarter the
size of a pixel and the all the rectangles in a pixel can be
combined to give an average colour. This tends to reduce
"aliasing"™ problems which occur because of the finite
resolution of the display device. This process is fast, but
produces output in a random order, not easily convertible

for a raster scan device.

The algorithm by Watkins [19708] has the scan 1line as
the central point instead of the face. For each scan line,
the set of edges whose projections onto the display screen
intersect it is determined. The intersections of the edges
with the scan line are used to divide it into segments, each
of which corresponds to only one face. Then the nearest
face corresponding to each segment is found from those faces
intersecting the scan line. This algorithm desn’t need to
store a picture buffer in core but only the segments of the
current scan line. From this, the actual pixels can be
calculated when they have to be displayed. This algorithm
is very fast, owing partly to the fact that adjacent scan
lines are very similar with respect to the edges and order

of the edges intersecting them.

HISTORY 2-33
ALGORITHMS

Archuleta [1972] gives an implementation of an
algorithm that is similar to Watkins. Hamlin [1977]
describes some image space algorithms and gives

improvements.

2.3.4 List Priority Algorithms

These algorithms start their calculations in object
space and then finish in 1image space. The two major
algorithms are due to Schumacker [1969] and Newell [1972a],
[1972k] . Schumacker ‘s was the first real time hidden
surface algorithm of any type. It is used in an aircraft
flight simulator where the scene stays constant but the
viewpoint changes. The scene has restrictions on it - for
instance the faces must be grouped into clusters that are
linearly separable (separable by &a plane between them).
Extensive ﬁreprocessing is done 1in object space on the
scene. The real time calculations are made with special

purpose hardware.

Donald Greenberg at Cornell [1974], [1877a], [1977b]
has implemented an interactive system involving colour with

shading and shadows. It uses an algorithm similar to

HISTORY 2-34
ALGORITHMS

Schumacker. Since it does not operate in real time, it can

handle more complex scenes.

Newell “s algorithm sorts the faces into a priority list

ordered by distance from the viewpoint. If two faces are
not comparable because they each overlap the other then one
must be split until a partial ordering exists. Then the
faces are written into a picture buffer, the farthest f£face
first. A nearer face simply overyrites a more distant face
in the same location. A transparent face doesn’t simply
overwrite a face it hides; instead some combination of the

two intensities is stored.

C.M. Brown [1977] developed an algorithm for

displaying scenes composed of well tesselated polyhedra on a

raster device. Such a polyhedron has triangular faces that
may be transparent. 'It also has an interior point, P, from
which all its faces are completely visible. Finally, if the
polyhedron is projected onto the surface of a sphere centred
on P, then the angle between any two adjacent edges incident
on the same vertex is less than 98° and the angle between
any two nonadjacent edges incident on the same vertex is
greater than 98°, A well tesselated polyhedron remains well

tesselated under a radial transformation wherein the

HISTORY 2-35
ALGORITHMS

distances of its vertices from P are arbitrarily changed
(provided their altitudes and azimuths remain constant).
Brown sorts the faces as Newell does. The resulting order
is not changed by radial transformations of the vertices.

This algorithm takes time &(N*log(N)).

2.3.5 Two And A Half Dimensional Algorithms

By this I mean algorithms that plot the surfaces of
functions Z=F(X,Y). Usually they place a fishnet or grid of
lines over the function surface and plot its wvisible
portions. There are many similar algorithms and they

generally employ a device called a horizon line. This is a

piecewise straight 1line running from left to right on the
screen that never doubles back and that lies initially along
the bottom edge. As the plot progresses, it moves up the

screen. The algorithm, briefly, is:

1. As always, normalize the viewpoint by rotating and

scaling the scene.

2. Now split the fishnet up intc individual edges and
sort them from from to back based on their distance

from the viewpoint.

HISTORY 2-36
ALGORITHMS

3. Take the edges in sorted order. For each edge,
draw as much of it as is above the horizon line and
raise the horizon line to meet the edge wherever it

is below it.

A more detailed explanation of horizon lines can be found in

the chapter on PRISM.

The horizon line was first used before 1968 by Rens and
Tobler in the SYMVU program described in Lab for Computer
Graphics [1972] &and [1978]. Other references to uses of a
horizon 1line are Brauer [1968]}, Veen [1977], S. Watkins

[1974], and Williamson [1972].

Wright [1974] uses the same type of algorithm to plot
electron orbital clouds, although they are not bivariate
functions. He represents them by a 3-D bit array and then
plots them front to back using a generalized version of the

horizon line.

Computer axial tomography scanner algorithms alsc use
the same technigues. They &lso use various interesting
smoothing techniques on the resulting pictures. Fuchs

[1977a] considers objects like human heads and intersects a

HISTORY 2-37
ALGORITEMS

system of parallel planes with them to create a set of
cross-sectional contours. Various interpolation and
smoothing techniques are used but the hidden surface method
has a similar spirit. Edelheit [1977) and Herman [1977a]

and [1977b] show some recent work in CAT algorithms.

2:4 OUTPUT
2.4.1 Devices

The output of hidden surface algorithms can be
displayed on a variety of devices. 1In general, object space
algorithms output on vector plotters such as pen plotters,
vector CRT’s or microfilm plotters while image space and
list priority algorithms output on raster devices such as
raster CRT's and graphic printer/plotters. Each mode of
output has its own advantages and problems. For instance, a
CRT 1is fast but is not as accurate as a pen plotter. Aalso
the usual hardcopy devices for CRT s produce copies that are
not permanent (they fade in time). Pen plotters produce
accurate copies but are slow and are subject to problems
such as the pen skipping a little at the start of every line

before the ink starts flowing. On the other hand it is easy

HISTORY . 2-38
OUTPUT

to change ink colours in & pen plotter, in contrast to
microfilm plotters which while fast and accurate, produce
only black and white unless they are very expensive models.
A raster device is better suited to shading since it can
fill areas directly while a vector device must draw many
close parallel lines. Also a raster device can do halftone
shading easily. However, raster devices often have a very
low resolution such as 256 by 256. If the resolution is not
high enough, problems wth aliasing, Crow [1977a], will
appear. Alsoc obligue lines will have an unpleasant stepped

appearance.

2.4.2 Shading

There are many different aspects to the realistic
shading of computer generated images. Much of the work has
been done at the U. of Utah by Blinn [1976], [39377]), Crow
[1976] & [1977a], and Phong [1975]. Newell [1977] is a

recent summary of progress.

One of the aspects of shading is the micro-complexity
versus the macro-complexity of the scene. The

macro-complexity concerns the large scale description of the

HISTORY 2-39
OouTPUT

scene such as the faces themselves while the
micro-complexity concerns such properties such as the
texture of the faces. This affects the properties of the
reflected light. 1Initially, the reflection was considered
to be diffuse; later specular components and other
components due to highlights were added. Shadows, Crow
[1978] and Weiler [1977], are handled by first calculating
the hidden surfaces from the point of view of the 1light
surface. (This paper, "Shaded computer graphics in the
.entertainment industry”, illustrates some o¢f the powerful
economic forces, such as the search for technigques to create
more effective TV commercials ahd science fiction movies,
that are driving research in computer graphics today.) The
visible surfaces are those exposed to the light. They are
marked and the hidden surface algorithm is applied again
with the correct viewpoint.‘ When the faces that are visible
this time are shaded, the parts of the visible faces that
were hidden from the light source are shaded differently.
Transparency 1is handled easily in some algorithms such as
Newell [1972a] that proceed by overwriting faces in the
picture buffer. Here a transparent face is not allowed to
completely overwrite a face behind it Sut instead some

combination of the two faces is stored. Highlights can be

HISTORY 2-49
OUTPUT

included by using several 1light sources. If the 1light
sources are not point sources then the light will be more
muted and shadows will have smoother boundaries. For extra
accuracy, the 1light diffraction around sharp corners and
refraction through transparent objects should be handled;
but so far no one knows how to do this efficiently. Colours
can be handled by repeating the shading calculations three
times, once for each of the primary colours. This allows
the faces and light sources to have different colours. The
calculations will be slightly different depending on whether
an additive (as for a CRT) or subtractive (as for & print)

colour scheme is used.

2.5 SUMMARY

As we have seen, the hidden surface problem is very
broad and has no clean-cut natural separations between it
and the rest of computer science but rather blends
continuously 1into approximations of functions, databases,
modelling and even into the physics of 1light reflection.
This thesis attempts the elucidation of a small area
involving object space algorithms and vector to raster

plotter conversion.

CHAPTER 3

A FAST OBJECT SPACE ALGORITHM

3.1 INTRODUCTION

This chapter describes a fast object space hidden
surface algorithm. For =scenes with NE edges satisfying
certain reasonable statistics (to be defined in section
3.3), this algorithm calculates the hidden surfaces in time
T=G(NE4/3). In general, a useful measure of the complexity
of a given scene is the number of intersections among the
projected edges in that scene, which we will call C. We
will show below, that within broad limits, this algorithm
takes time = 6(C). One reasonable value for C is 8(NE4/3)
whence the statement above. This is an improvement since
existing object space algorithms such as those described in
Sutherland, Sproull & Schumacker, [1974b], take time

323

T=0Omega (NE) under these statistical assumptions and time

2

T=Omega (NE®) under any statistical assumptions. Now object

A FAST OBJECT SPACE ALGORITHM 3-2
INTRODUCTION

space algorithms calculate the resulting visible scene
- accurately to the floating point precision of the scene and
not just to the resolution of one pixel as image space
algorithms do. Because of this, object space algorithms
have been considered to be inherently very slow. The
algorithm described here shows that the extra information
calculated by object space algorithms does not constrain

them to run so much more slowly than image space algorithms.

This algorithm only handles scenes in which all the
faces are flat and the edges are straight. Curved surfaces

are a topic for future research.

3.2 DATABASE FORMAT

The scene is assumed to consist of vertices, edges, and

faces. A vertex 1s a 3-D point defined by its Cartesian
coordinates. The vertices are numbered. An edge 1is a
finite straight line between two vertices that is defined by
the set of those two vertices. A face is a polygon on a
plane in 3-space that 1is defined by an ordered list of
vertices. Such a polygon may not intersect itself. The

edges of a face are also edges in the database. See Figure

Figure 3-1: Data structure for a cube sh
edges, and faces

El
I/
4 £3 3
4
EY
EX
EY
S ES (2
E7 7%
l E/ 2
Vertices Edges Faces
l: {ﬁ;gpg} l: (lle l: (112;3;4)
2:(1;@;9} 2: (:2:3) 22 (51817:6)
3: (1,9,1) 3z (3,4) 3: (2,6,7,3)
4: (0,0,1) 4: (4,1) 4: (3.8.,7,4)
5: (0,1,0) 5: (5,6) 9t (4,8,5,1)
6: (1:0;0) 6: (6,7) 6 {(1:5.,8;2)
72 (1:1:1) 1% tl.8)
8: (0;1:1) 8: (8,1)
9: (1.,5)
18: (2,6)
11s {10
12: (4,8)

owing vertices,

A FAST OBJECT SPACE ALGORITHM 3-4
DATABASE FORMAT

3-1 for an example of how a scene consisting of a cube is
encoded. The faces are assumed to be opague and to hide

whatever 1is behind them.

3.3 STATISTICAL ASSUMPTIONS

Before any algorithm can be analyzed, it 1is necessary
to know the statistical distribution of the input scenes
that it is to be used on. Worst case analysis is possible,
but inappropriate. All existing-implementations of hidden
surface algorithms above the naive level have soﬁe concept
of a M"normal" input and are optimized with respect to it.
An adversary can make them run much more slowly by choosing
proper input. The task is to define what input scenes are
normal. This is difficult since there 1is no obvious a
priori probability distribution on the complete set of all
possible scenes. Instead, statistics should be kept of what
scenes are actually drawn. However this presupposes an
implemented algorithm; and even then the data would be

biassed since people would tend to use such an algorithm

more on those scenes that it plots more efficiently.

A FAST OBJECT SPACE ALGORITHM g 3=5

STATISTICAL ASSUMPTIONS
However some attempt must be made. As is usual, only
orders of complexity are used since the actual
multiplicative.constants are dependent on the implementation
of the algorithm and on the machine used. The measure of
size of the input scene is taken to be NE which 1is the
number of edges. Other measures could be taken such as the
number of vertices (NV) or faces (NF) which are normally
proportional to NE. To be precise, however, there do exist
NE NE

infinite sequences of scenes with the ratios §v °f RNF

monotonically increasing without limit.
The following assumptions are made:

l. The edges are uniformly, randomly and independently
distributed in 1location and angle of inclination.
That is, the centre of each edge is d;awn from the
distribution U[B,l}2 and the angle of inclination
from U[6,2*pi). Any edge that would 1lie partly
outside the square screen 1is deleted from the
ensemble of possible edges. This effect of the
border becomes relatively smaller as NE tends to
infinity since the edges become shorter and a
smaller fraction would cross the border if not

deleted.

A FAST OBJECT SPACE ALGORITHM 3-6
STATISTICAL ASSUMPTIONS '

2. For any scene, all the edges are the same length.

3. The basic measure of complexity of a scene 1is the

number of intersections among the projected edges.

Assumption 1, that the edges are independently and
randomly distributed, 1is not exactly true since the edges
are joined by the vertices. However, it becomes more nearly
true as the scene becomes bigger, and is always a good
working approximation. If the number of edges incident on a
vertex 1is bounded, then the number of-other edges adjacent
to any given edge, and thus strongly correlated with it,
becomes a decreasing fraction of the total number of edges.
As the scene size tends to infinity, this fraction tends to

Z2ero.

Assume the scene is composed cof fixed size objects such
as cubes. If the different cubes are randomly oriented
relative to one another then as the scene gets bigger, most
of the edges (those from different cubes) are totally
uncorrelated. Even if the scene 1is one highly ordered
object such as a 3-D grid, the effect on a pair of distant

edges is small. Instead of the probability distribution of

A FAST OBJECT SPACE ALGORITHM 3=-7
STATISTICAL ASSUMPTIONS

their distance and angle being smooth, it has bumps at the
allowable separations. These bumps in the probability
distribution become relatively smaller as the scene gets
bigger and thus don’t affect which grid cells the edges fall
in. Further, under either a smooth or bumpy distribution,

most of the edges will not intersect.

There is still another effect tending to smooth out the
probability distribution of the edges. Viewing from a
random angle and projection onto 2-D both act as
convolutions that tend to smooth out the distribution and
destroy the order. This loss of order effect 1is wvisually
apparent in the 1loss of <clarity when a photograph of a
complicated scene 1is viewed, compared with seeing the

original scene in stereo.

There may also be violations in assumption 1 due to the
edges being predominantly vertical and horizontal, and due
to the edges clustering in the centre of the scene. These
are unimportant =since they <cause only a change in the

multiplicative constant of the algorithm’s speed.

A FAST OBJECT SPACE ALGORITHM 3-8
STATISTICAL ASSUMPTIONS

Assumption 2, that the edges are all the same 1length,
simplifies analfsis. If necessary, a scene can be changed
to conform by splitting the longer edges until they are some
average length. This will only change NE by a constant and

so not affect the rate of growth of the time.

Assumption 3 is used since all object space algorithms
must determine which projected edges intersect and calculate
the intersections. The complexity of other calculations
they perform such as determining the visible segments is

related to the number of intersections.

The first problem 1is to determine the number of
intersections among the projected edges. Normalize the
screen to be of size 1 by 1. Two projected edges El and Ez
with 1lengths 1i’ centres (xi, yi) and angles of inclination

a; will intersect iff

((x1-%,) sin(a,) = (y,=y,)cos(a,)) >~ ((sin(a;=a,))*1) 2 < @
and

((xz-xl)sin(al)—(yl-yl}cos{al)}2—((sin(a2—al))*12)2 < 8.

This formula is derived from the fact that El and E

2
intersect iff the endpoints of El are on opposite sides of

Figure 3-2: Determining when two edges intersect

10

A FAST OBJECT SPACE ALGORITHM 3
STATISTICAL ASSUMPTIONS

E extended to infinity, and vice-versa. This is

2
illustrated in Figure 3-2. In the first case there, neither

of the edges A and B crosses the path of the other. 1In the
second case, only one does. In the third case, each crosses
the other so the edges intersect. If the edges have centres
(x;, y;) uniformly distributed in [8,1]° and angles a,
uniformly distributed in [6,2*pi), then the probability of

their intersecting is 0(11*12}.

If there are NE edges,

let L = LNE be their length (c.f. assﬁmption 2]
Then NX = expected number of intersections
= @(NEZL?). (eqn 3-1)

TEL = total edge length

]

© (NE*L) .
Thus the scene complexity, which 1is the number of edge
intersections, is the square of the total edge length.
AFA = average face area
- 9(L2) since the faces have sides L long.
TFA = total face area
= NF*AFA

= ©(NE*L) since NF = & (NE).

A FAST OBJECT SPACE ALGORITHM 3-11
STATISTICAL ASSUMPTIONS

Now, Appel ‘s algorithm [1967], which intersects all
pairs of edges and then tests all edge segments against all

faces, tzkes time

TAppel = Omega(NE2 + NX*NF)

= Omega (NE% + NESL?)

= Omega(NEz)

To be useful the form of L has to be further

NE
specified in terms of NE. A typical infinite segquence s; of

scenes with increasing numbers of edges has to be found.

One such seguence might be a cubical array of cubes. Let

3

scene s have 13 cubes containing NE = 12%*i edges. Since

i
the scene’s total size is one by one by one and there are i

cubes in a row, an edge cf a cube has length i"l. Then

-1/3

L = NRE (egn 3-2)

So, substituting this into equation (3-1),

NX = o(NEY/3)

and T = Omega (NE'/3)

Appel

A FAST OBJECT SPACE ALGORITHM 3-12
STATISTICAL ASSUMPTIONS

Another possible sequence of scenes would have S5

1 but also all

-1

containing not only the 13 cubes of length i~

3

previous cubes. Thus there would be j~ edges of length j

for 1<j<i. Thus, summing,

TEL = 6(id)

and splitting all the edges to a constant length of i,

L = NE'1/4, so

= 2.5 ; .
TAppel = Omega (NE) which is worse than before.

These times are actually 1lower bounds since clearly
Appel ‘s algorithm must take at least this time (for instance
testing a pair of edges for intersection takes at least
constant time). However the algorithm may actually take
more time. In particular, various sorting operations will

probably add a log(NE) factor.

A FAST OBJECT SPACE ALGORITHM 3~13
THE ALGORITHM

3.4 THE ALGORITHM

3.4.1 Summary

It is assumed that the standard normalizations and
perspective transformation defined 1in chapter 2 have been
performed. This algorithm resembles that of Appel. In

brief it is:

l. Perform various preprocessing steps such as

deleting "back" edges and faces.
2. Determine which projected edges intersect.

3. Partition each edge at its intersections with other

edges into segments.
4. Determine which segments are visible and plot them.

5. Use the visible segments to partition the screen

into polygons.

6. Determine which face each polygon corresponds to

and shade it accordingly.

A FAST OBJECT SPACE ALGORITHM - 3-14
THE ALGORITHM

3.4.2 In Detail

There are various preprocessing steps that speed up the
algorithm by a constant factor of about two. Thus they are
useful in an implementation but do not affect the asymptotic
rate of growth. For instance, 1if the scene contains a
closed polyhedron, then the faces and edges on its back can
never be visible so they might as well be deleted. If we
assume that every face of such & closed polyhedron knows
which side of itself is inside the polyhedron and which side
is outside, then the back faces are those with the viewpoint
on the inside of the face. This applies whether or not the
polyhedron is convex or not. Any edge that is adjacent to
only back faces must also be on the back of the polyhedron
and can be deleted. For example, in Figure 3-1, the back
edges are 5, 8, and 9 and the back faces are 2, 5, and 6.
An easy way to record the orientation of a face is to
specify that its vertices run in a positive direction when
seen from the outside. This is why chapter 2 mentioned that
the projection normalization reverses the parity of a scene.
After such a normalization, vertices that ran in a positive

direction now run in a negative direction.

A FAST OBJECT SPACE ALGORITHM 3-15
THE ALGORITHM

An average polyhedron has half its faces on its back.
The fraction of back edges depends on the number of edges in
the polyhedron but for a cube averages 1/4 and for a large
polyhedron 1/2. Thus a significant amount of time is saved
by deleting them. If the scene contains other objects
besides closed polyhedra, they do not prevent this
optimization from being applied to the polyhedra that are

there.

An edge, E, can change its wvisibility only when it
passes behind or comes out from behind a face. Since each
face ‘s edges are required to be edges in the database, E can
change its wvisibility only when its projection onto the
screen crosses the projection of another edge. Thus the
projected edge intersections must be determined. One way is
to test every pair of edges by the method mentioned earlier

and illustrated in Figure 3-2.

If the intersections of edge E with other edges are
sorted 1in order of occurrence along E and used to divide E
into segments, each segment will be either wholly visible or
else wholly hidden. Thus these segments must be determined.
Since these intersections are in 2-D on the screen, they

must first be "deprojected" to the original 3-D edge E.

Figure 3-3: Deprojecting a projected edge intersection to
the origirnal 3-D edge

Figure 3-4: A face hiding a point

A FAST OBJECT SPACE ALGORITHM 3-17
THE ALGORITHM

This is done by extending a line from the viewpoint through
the 2-D intersection to meet E in 3-space at a point which
is the 3-D intersection. See for example Figure 3-3 where
the intersection of the projections of El and E2 is

deprojected to P on El'

The visibility of a segment, S, is the same as the
visibility of any point along it, say its midpoint, P. P is
a point in 3-space. Compare it with all the faces to
. determine which it is behind. Being "behind" a face, F, as
in Figure 3-4, means that a line from the viewpoint through
P passes through F. There are two parts to this: P must be
inside the projection of F and the line from the viewpoigt
to P must pass through the plane of F. The first part can
be performed easily since projecting F consists of
suppressing the Z coordinates of its vertices and since
testing whether a point is in a2 polygon is easy. One such
algorithm is given in chapter 2 and illustrated in figufe
2-6. The second step can be done'by substituting P into the
equation of F to see which side of the plane of F, P is on.
It is behind the plane if it is on the opposite side from
the viewpoint. If P is behind no faces then P and also the

corresponding segment is visible. The visible segments can

P

/

8]

N

3-18 -

A FAST OBJECT SPACE ALGORITHM 3-19
THE ALGORITHM :

be plotted.

The parts of the faces that are visible form polygons
on the screen that are delimited by visible segments. Hence
we wish to partition the screen into polygons with the
visible segments. This means to produce an explicit list of
polygons. If there are NS visible segments, this takes time
T = ©(NS*log(NS)) since it 1is essentially a sorting
operation. Here we are dealing with the projected segments

again.

This explicit list of polygons is insufficient if the
Planar graph is disconnected and has components inside
polygons of other components. These cases must be marked
since if polygon P contains component C without that fact
being recorded, when P is shaded all of C will be overdrawn
as shown in Figure 3-5. These inclusions can be detected
with a generalized point-in-polygon routine such as given in
chapter 2. Next one solution is to connect the disconnected
components with extra segments that will not be drawn, so as
to make the graph connected. Another way is to calculate
the tree describing the inclusion relations. The tree nodes
are connected components and component Cl is a son of C2 iff

C1 is immediately contained (without any intermediate

3=20

T ¥y 3 3 15

31 EFS F

W

w

o

N
Y

N
AN i

=

LY #ﬁ/ 33 3%

Figure 3-6: Finding edge intersections with a variable grid

A FAST OBJECT SPACE ALGORITHM 3-21
THE ALGORITHM
components) inside C2. Then when a polygon of C2 is shaded,

any components inside it can be excluded.

Now each polygon corresponds to only one visible face.
However, one visible face may have two or more polygons

since it may have several disjoint visible parts.

l. To shade a polygon, Q, it is necessary to know which
face Q corresponds to. Since all points of Q correspond to
the same face, choose a representative point, P. Either the
gentrolid of O or the centre of a box enclosing it are
natural choices. However if Q is not cohvex, they may not
be inside it. Nevertheless, if all the nonadjacent vertices
of Q are joined, at least one of those 1lines will fall
totally inside Q. So if a point-in-polygon test fails with
the centroid, the midpoints of these lines can be tried 1in

turn until one is found that is inside Q.

A FAST OBJECT SPACE ALGORITHM 3-22
THE ALGORITHM

3.4.3 Finding Edge Intersections

3.4.3.1 Method -

The problem of determining which of the possible edge
intersections actually occur is a form of relational
database problem. Each edge can be considered to be a
relation, that is a set of orderéd pairs (x;,¥;). Two edges
that intersect are equivalent to two relations having a non
~zero intersection. Finding all intersections is equivalent
to retrieving all the records or ordered pairs that satisfy
simultaneously any two from a set of relations. In the edge
intersection problem however, each relation is satisfied by

an infinite set of records (all the points on the edge).

Finding which edges intersect is also related to the
partial match retrieval problem, Rivest [1976], [1974]. The
partial match retrieval problem concerns retrieving all the
records that satisfy a certain criterion from a set. It is
more general than retrieving the i-th record (array lookup)
or the record with key #i (hashing). 1In partial match
retrieval, an n-bit key is given, but only k of the bits are
specified and it 1is desired to retrieve all the records

whose keys match the target key in the k specified bits and

A FAST OBJECT SPACE ALGORITHM 3-23
THE ALGORITHM

have anything in the (n-k) remaining bits. The naive way is
to simply hash and check all " i possibilities but there
are faster methods that involve dividing key space into
"buckets" or groups and hashing each Trecord by its group
number. Then all the satisfactory records can be retrieved
by reading a small number of buckets (much smaller than

Zn-k).

It was the partial match retrieval buckets that
provided the idea for the data dependent grids that are the
basis of the fast object space algorithm given in this

chapter.

Since the number of edge pairs is e(NEz), while the
4/

number of intersections is & (NE 3), no method of comparing
the edges pair by pair can be asymptotically linear in the
number of intersections to be found. There are various fast
pretests such as first testing whether the pair of edges
overlap in both X and Y coordinates before doing the
detailed calculation. This causes only a constant speedup
in the time, and speeds the algorithm up at all only if it

causes a sufficient number of edge pairs to be rejected.

Something better is needed.

7

O
g T
1]
NN

EL®

9,7 . 7///5//,
= |

7
o

Figure 3-7: The number of grid cells hidden by a face

3-24

A FAST OBJECT SPACE ALGORITHM . 3-25
THE ALGORITHM :

One possibility would be to use the k-d and guad trees
of Bentley [1975a] and [1975b] and Finkel [1974]. These
trees are generalizations of the traditional 1-D binary
tree. They «can be used to partition multi-dimensional key
spaces to find matches and neighbours. However they are
difficﬁlt to implement and inefficient for small databases.

So I decided to use a variable grid.

Therefore do the following to find edge projected

. intersections, as shown in Figure 3-6:

1. Divide the screen into a grid of GE by GE cells where GE

varies with NE in a way to be determined later.

2. For each edge E, calculate the cells {Ci} that E passes

through.

3. Write a file of ordered pairs (Ci, Ej) giving these
inclusion relationships. As each E is processed in order,

its ordered pairs will be written.
4. Sort this file by cell number.

5. For each cell, read into memory those ordered pairs of
edges passing through it. Test all the pairs of edges for

intersections. Since a pair of edges that intersects must

{ T

A FAST OBJECT SPACE ALGORITEM 3-26
THE ALGORITHM :

do so in some cell, this finds all intersections.

6. As the intersections are found, write them out in a file

for future processing.

Thus in Figure 36, edges El and EZ are never tested for
intersection since they never fall in the same cell. Since
E2 and E3 both pass through cell 34, they are tested and do
actually intersect. Eq and E4 are also tested but this pair

does not intersect.

3.4.3-2‘ Notes i

l. This division of the screen bears a surface similarity
to Warnock’s algorithm but is actually quite different since
here the division 1is fixed instead of being subdivided
recursively by the data, and here the intersections are

found exactly instead of just to the accuracy of a pixel.

2. The grid size need not be constant across the screen but

might take advantage of the greater density of edges in the

centre. However

A FAST OBJECT SPACE ALGORITHM : 3=-27
THE ALGORITHM
1. This would produce only a small constant factor

improvement, and

2. Calculating which cells a given edge fell in would

be much slower.

3. An intersection between two edges, one of which is in
general farther from the viewpoint than the other, is only
useful to the farther edge. This 1is because the farther
edge can be hidden by a face adjacent to the nearer edge but
not vice-versa. If this fact is ignored, the nearer edge
will be éﬁlit into an extra unnecessary segment that must be
tested for visibility. On the other hand, testing the
distances of the edges at the intersection also takes time.
Wwhich effect predominates depends on the detailed

implementation of the algorithm.

3.4-3-3 Timing o

Consider first the gualitive relationship between GE
and the time it takes to determine edge intersections: If
GE is large (cell size small): The cells themselves use no

storage unless they contain edges so there is no overhead in

A FAST OBJECT SPACE ALGORITHM - 3-28
THE ALGORITHM
this respect from making the cell size small. However there

will then be more (cell, edge) pairs to write and sort.

If GE is small (cell size is big): There will be fewer
pairs, but each cell will have more edges all of whose pairs
will have to be tested. Also, a smaller fraction of those
pairs will actually intersect. In the limit as
GE->infinity, the only cells with more than one edge will
have two edges that intersect. On the other hand, if GE=1,

we are back at the case of worse than guadratic growth.

Let A = number of cells an edge of length L is in.

= @ (max (GE*L,1l)) since it is in at least 1 cell.

?hen B total number of (cell, edge) ordered pairs

= NE*A

= O (NE*max (GE*L, 1))

= @ (max (NE*GE*L,NE)).
And Tl = time to calculate, write and sort (cell, eége)
ordered pairs

= O(B*log(B)).

These B ordered pairs are distributed among GE2

cells for an
average of

C E B/GE2 pairs per cell.

A FAST OBJECT SPACE ALGORITHM 3-29
THE ALGORITHM

= O(max{NE*L/GE,NE/GEZ))

Let P, = probeability that a cell has i edges in it.
Because of the assumption that the edges are independently
distributed among the cells, P which is the distribution of
the number in any given cell, is Poisson distributed with
mean C. This is because whether or not any given cell
contains any given edge is independent of any other edges
that might be in that cell. The average number of edge
pairs per cell is the sum of i(i—l)Pi/Z from 1 to infinity.
This sum is e(cz). Thus the time to test each the edges of
each of the GE? cells for intersections is e(Cz) for a total
time of

6 (GE2*C?)

43

2

o (max (NE%*L2,NEZ/GE?))

The total time to find the edge intersections is
T =T1-i-T2
and it is desired to choose GE as a function of NE to

minimize T. Now there are two cases depending on whether GE

¢ 1™} or not.
Case 1: e < 1™t
B = ©(NE)
T = ©(NE*log(NE) + NEZ/GE?)

A FAST OBJECT SPACE ALGORITHM 3-30
THE ALGORITHM

This is minimized when GE is as large as possible, that is

when
GE = 1L™* which gives
i = @(NE*1log (NE) + NEZ*LZ)
Case 2: g > 3
B = B8 (NE*L*GE)
i = B (NE*L*GE*log (NE*L*GE) + NEz*LZ}

which is minimized by minimizing GE, that is for

GE o e as before.

So in either case, T = e{NE*log(NE)+NE2*L2).
But NX = expected number of intersections
= G(NEE*L2)
sO0 T = 6(NE*log (NE) +NX) .
Thus for any statistical measure such that NX grows at least
as fast as NE*log(NE),
T = 8(NX)

which is certainly optimal.

For the special case mentioned before, L=Ng~1/3 so

4/3

T = 6(NE)

A FAST OBJECT SPACE ALGORITHM 3-31
THE ALGORITHM

3.4.4 Splitting The Edges Into Segments

Now these intersections can be used to split the edges
up into segments that are each either wholly visible or else

wholly hidden. The method is:

1. As each intersection point is found, say between edges
Ei and Ej, write two ordered pairs (Ei, Ej} and {Ej, Ei) to

a temporary file.
2. Sort this file by the first member of each pair.

3. For each edge, E, in order, read in the ordered pairs

with that edge as the first element.

4. Calculate the 2-D intersection points between E

projected and the intersecting edges, projected.
5. Sort these points along E.

6. "Deproject" each point, P, to the 3-D edge by finding
the intersection of a ray from the viewpoint through P and
the line E, as shown in Figure 3-3. Because of roundoff
error, these two lines in 3-space may not intersect exactly
in which case the point on E closest to the ray is

sufficient.

A FAST OBJECT SPACE ALGORITEM 3~32
THE ALGORITHM

7. Use the 3-D intersection points to split E into

segments.

8. Write out a file of segments {Si}.

3.4.5 Determining Visibility Of The Segments

The naive way is to compare each segment against all
the faces to see whether any hide it. But with G(NE4/3]
segments and ©(NE) faces this could take time =
Omega(NE7/3). So the same device as before of splitting the
screen into & grid is used. But this grid of GF by GF cells
is a different size than the GE by GE edge grid because a

different quantity is being optimized.

1. Split the screen into a grid of GF by GF cells, where GF

will be determined later.

A FAST OBJECT SPACE ALGORITHM 3-33
THE ALGORITHM

- J
intersects, that is which cells Fj falls at least partly in.

2. For each Face, Fj' determine which cells C., F.,

3. Write a file of the ordered pairs (Ci' Fj) determined in

step 2.
4, Sort this file by cell number.

5. Within each cell, deproject the centre point of the cell
onto the planes of all the faces in that cell. Sort the
faces in the cell by the Z coordinates of those deprojected
points. The greater the Z coordinate the closer the point
is to the'viewpoint. The deprojected point for a face may

or may not be inside the face; this is immaterial.

6. For each cell, consider all the faces in it: If any
completely covers the cell, delete in that cell only, all
the faces completely behind it. An easy test to determine
whether face Fl is behind F, is to consider the
intersections of the four corners of the cell projected onto
each face plane. . If Fl is behind F2 at these four points
then it will be behind it at every linear combination of
them, 1i.e. everywhere in the cell. (However Fl may be in
Itont of P somewhere else in another cell. This 1is

2
alright.) This test is sufficient but not necessary since it

A FAST OBJECT SPACE ALGCRITHM 3-34
THE ALGORITHM

misses the case where F2 covers the cell and F1 does not and
although Fl is behind Fo, Fl extended over the whole cell is
in front of F2 at some point. Whether it 1is worth making
this test exact and eliminating some more faces from the

cells depends on the exact timing in the implementation.

7. Put this file into a form where all the faces in a given

cell can be found quickly:

1. If memory is available, read the file into core.
It 1is unnecessary to store the ordered pairs
explicitly; a list of face numbers for each cell is

equivalent and more compact.

2. If the file is too large, arrange it on disk in
some convenient tree structure. The desired
operation 1is the retrieval of varying length
records by key. Since published random access
methods generally require fixed 1length records,
each .record for the set of faces in a given cell
éan be split into several fixed 1length records.
Since there will be only retrievals, no insertions

and deletions, the tree can be optimized.

A FAST OBJECT SPACE ALGORITHM 3-35
THE ALGORITEM

8. Read each segment, S., in sequence from the segment

file.

1

9. Find the midpoint, P, of Si.

1. Determine which grid cell, C.

g P falls into.

11. Compare P against every face, Fj’ in Ci to see whether

the face hides P by:

1.

2.

ies 1If

visible

3.4.5.3

Testing whether P is behind the plane of Fj’ and

testing whether P projected is inside Fj projected.

P is visible, plot Si and add it te a file of

segments.

Timing -

Assume the faces are squares of side L with horizontal

and vertical sides (that 1is not obliquely oriented).

Rectangular and oblique faces would affect the results by a

constant factor only.

A FAST OBJECT SPACE ALGORITHM 3-36
THE ALGORITEM

Let L

n

GF'l(N+e) for nonnegative integer N and #<e<l.
Then a face, F, covers (N+l)2, (N+1) (N+2), or (N+2)2 cells

with probabilities:

P[(N+1)%] = (1-e)?
P[(N+1) (N+2)] = 2e(1l-e)

P[(N+2)%] = e°.

To see this, consider Figure 3-7. Here, N=0 and e=0.7.
Assume without loss of generality that the lower left corner
of ¥ is In qell C. Then in the first case, F occupies one
grid cell'.if its lower 1left <corner 1is in the shaded
(l1-e) (1-e) subsquare of C. In the second case, F occupies

two cells and in the third case four.

Thus ACF = average number of cells covered by each face

is obtained by summing the above so

ACF = (N+1+e}2
= (L*GF+1) 2. (eqn 3-3)
Let TFP = total number of (cell, face) ordered pairs
= NF*ACF.

Let AFC = average number of faces per cell, for the moment

not deleting faces that are completely behind another face

A FAST OBJECT SPACE ALGORITEHM 3-37
THE ALGORITHM

that covers the whole cell.

2

AFC TFP / CF

= NF*ACF/GF?

NE*ACF/GF 2 since NF=8 (NE)

The times here are:

T, » time to calculate the faces in the cells
= time to sort the TFP (cell, face) ordered pairs
= @(TFP*log (TFP))

= ©(NE*ACF*log (NE*ACF)) (egn 3-4)

and 2, » total time to test all the NE2 2 segments for

visibility, assuming each segment is compared against all

the faces in that cell.

6 (NE2*L2*AFC) (egqn 3-5)

2

-

2
6 (NE3*L%*ACF/GF?)

o (NE3L4+2*NE>L3/GF+NE3L2/GF?)

Finally T = total time

= T, 4 T2 (egn 3-6)

i
Now T2 is minimized when GF is chosen so that Tz's second
and third terms grow no faster than its first term.

Therefore GF = Omega{L_l}

A FAST OBJECT SPACE ALGORITHM 3-38
THE ALGORITHM

So T1 = @ (NE*log (NE))

and T2 = NE°L

For the sample statistics used before,

1/3

L = NE~ (eqn 3-2, repeated)

80 T = NE*log (NE) + NE5/3

This result is slower than the time taken to determine
the edge intersections so it will dominate the total time.
The problem is that making the face grid finer doesn’t
reduce the number of faces per cell which in this case is
still B(NE;/B) as GF»infinity. In contrast, the number of
edges per cell tended to zero as GE->infinity. This is why
the algorithm has the refinement (section 3.4.5.2, points 4
and 5) of sorting the faces in each cell and deleting those
behind any face that covers the whole cell. How great an
improvement does this give? The next two pages of

calculations will determine this.

Assuming, as before, that the faces are squares of side
L that are oriented orthogonally,
ACF = average number of cells covered by each face
= (L*GF+1)2 (egn 3-3, fepeated)

By a calculation similar to that used to calculate ACF, ACC

A FAST OBJECT SPACE ALGORITHM 3-39

THE ALGORITHM
= average number of cells completely covered by each face

= (L*GF—l)2
Thus of the AFC faces in each cell, a fraction

r=ACC/ACF (egqn 3-7)
of them completely cover the cell. Since the faces are
assumed to be the same size, the faces in a given cell that
completely cover it are randomly distributed among all the
faces in that cell, when those faces are sorted. Thus it is
easy to calculate the expected number of faces encountered
before the first face to completeiy cover the cell. Assume

that APC »> 1 and thus II#GE >> 1.

Let AFC’ = average number of faces per cell, up to the first
face completely covering the cell.

= 1/T

ACF/ACC (from egn 3-7)

Note that the total number of faces in the cell (AFC) is
irrelevent; only the fraction of faces that completely
covers the cell matters.

Thus AFC’ = (L*GF+1)2/(L*GF-1)2

But so long as GF = Omega(L_l), AFC” has an upper bound and
so

T2 = total time to test all NEEL‘ segments for visibility

A FAST OBJECT SPACE ALGORITHM 3-40
THE ALGORITHM

= G{NEZLZJ (egn 3-8, from egn 3-5)
Now ACF = (L*GF+1J2 | (egn 3-3, repeated)
= G(LZGFZ}

so, substituting equations 3-5 and 3-8 into 3-6,
6 (NE*L2*GF2*10g (L*GF) +NE2L2)

21249 (GF%*10g (L*GF) +1)

L}

- 3

L}

NE

2*log(L*GF) doesn 't

This is minimized by any GF such that GF
grow faster than 1, or if this is impossible by minimizing
GF.

-1
If GF = (L)
then T = NE+NE2L2

= NE"L since L = Omega(NE)

Thus we have shown that the refinements given in
section 3.4.5.2, points 4 and 5, allow us to determine the
visible segments in time linear in the number of edge
intersections, which is also 1linear in the number of

segments.

A FAST OBJECT SPACE ALGORITHM 3-4]
THE ALGORITHM

3.4.6 Shading The Polygons

Once the visible segments have been found, they can be
used to partition the plane into polygons. The faces
corresoonding to these polygons must be found. That is, 1if
a ray 1is extended from the viewpoint through any point in
the polygon (which is in the perspective plane) to infinity,
of the faces it intersects (which will be different
depending on which point in the polygon is chosen), then the
same face will always be first. .This is the face that the
polygon corresponds to. This face’s properties such as
angle of inclination relative to the light and texture will

be used to shade the polygon.
Find the face corresponding to the polygon P thus:

1. Pick a point, X, in P. 1If P is convex, the centroid is
sufficient but if not then it may be necessary to join all
pairs of nonadjacent vertices and test the midpoints of

those lines to find an acceptable point.

2. Determine which face cell X is in.

A FAST OBJECT SPACE ALGORITHM . o,
THE ALGORITHM

3. Test the faces {Fi} in that cell. For each Fi that
contains X inside its projection onto the perspective plane,
extend a ray from the viewpoint through X to the plane of Fi
and find the distance from the perspective plane to the face
plane along it. The Fi with the smallest distance is the

desired face.

Since the e(NEZLZ} visible segments produce 9(NE2L2)

polygons and each takes constant time to find the face for
(by reasoning the same way as in the preceding section),

this takes time

T = o(NEZLY)

3.4.7 Owerall Tinme

Thus the total time for this algorithm, adding the
times to find the edge intersections, test the segments for

visibility, and find the faces corresponding to the

polygons, 1is
T = 6(NEZLY)

(assuming L = Omega(NE*log(NE))) and using the example

A FAST OBJECT SPACE ALGORITHM 3-43
THE ALGORITHM

statistics given before,

7 = o(NEY/3)

3.5 IMPLEMENTATION

The hidden 1line part of this algorithm has been
implemented in a 120086 line Fortran program, VIEWPLOT on the
PDP-106. It is described in Appendix A. Section A.l contain
a brief summary of the program. Section A.2 is a logic
manual giving a routine by rutine description of VIEWPLOT.

Section A.3 is a users’ guide.

The program logic manuals for VIEWPLOT and PRISM-MAP in
the appendices 1illustrate some of the problems that arise
when graphics algorithms are implemented. Numerous messy
special cases must be considered. The problem is
exacerbated by the finite precision of floating point
numbers. For instance two lines may intersect but still be
nearly enough parallel that the determinant of the equations
is nearly =zero. Then the standard equation for the
intersection point gives a floating overflow error. 1In this

case, I project the two edges’ four endpoints onto an axis,

A FAST OBJECT SPACE ALGORITHM by
IMPLEMENTATION

sort them to identify the middle twe and then use the
average of those two as the intersection point. Again, a
routine that decides whether a point is in a polygon may
return that a point that is near the perimiter is inside at
one time but outside if everything 1is rotated about the
origin because both the point and the polygon vertices will
have small errors now. A vertex of a polygon in 3-D that
satisfies the polygon’s plane equation no longer satisfies
it exactly after both the vertices and the equation are
transformed perspectively. Addition and multiplication do
not associate. On poorly designed machines such as IBM-378,
multiplication and division are not exactly inverse.
operations. These last two points can cause errors with an
over-optimizing optimizing compiler. I generally do not
require that calculations be exact to the 1last bit, only

that they be reproducible to the last bit.

There are also numerous low level problems caused by
differences between machines, restrictions of Fortran, etc.
Both these algorithms are implemented in standard Fortran so

that they are transportable.

T e e e e

A FAST OBJECT SPACE ALGORITHM 3-45
IMPLEMENTATION

These sorts of problems have kept the art of
implementation, not only in graphics but also in other areas

of computer science, from becoming a science.

