a)

$$
\begin{aligned}
F_{y}(x) & =F_{y}\left(x \mid B_{0}\right) P\left[B_{0}\right]+F_{y}\left(x \mid B_{1}\right) P\left[B_{1}\right] \\
& =P[y \leq x \mid x=-1](1-P)+P[y \leq x \mid x=1] P \\
& =P[x+N \leq x \mid x=-1](1-P)+P[x+N \leq x \mid x=1] P \\
& =P[N \leq x+1](1-P)+P[N \leq x-1] P \\
& =F_{N}(x+1)(1-P)+F_{N}(x-1) P
\end{aligned}
$$

$$
\begin{aligned}
& f_{y}(x)=\frac{d}{d x} F_{y}(x) \\
&=(1-p) f_{N}(x+1)+p f_{N}(x-1) \\
& f_{y}\left(x \mid B_{0}\right)=f_{N}(x+1)=\frac{\alpha}{2} e^{-\alpha|x+1|} \\
& f_{y}\left(x \mid B_{1}\right)=f_{N}(x-1)=\frac{\alpha}{2} e^{-\alpha|x-1|} \\
& f_{y}(x)=\frac{1}{2}\left[\frac{\alpha}{2} e^{-\alpha|x+1|}+\frac{\alpha}{2} e^{-\alpha|x-1|}\right]=\frac{1}{4} \alpha\left[e^{-\alpha|x+1|}+e^{-\alpha|x-1|}\right]
\end{aligned}
$$

b)

$$
\begin{aligned}
P\left[y<0 \mid B_{1}\right] & =P[X+N<0 \mid X=1]=P[N<-1] \\
& =\frac{\alpha}{2} e^{-\alpha|-1|}=\frac{\alpha}{2} e^{-\alpha} \\
P\left[Y \geqslant 0 \mid B_{0}\right] & =P[X+N \geqslant O \mid X=-1]=P[N \geqslant 1] \\
& =\frac{\alpha}{2} e^{-\alpha}
\end{aligned}
$$

c)

$$
\begin{aligned}
P_{E} & =P\left[Y<O \mid B_{1}\right] P\left[B_{1}\right]+P\left[Y \geqslant O \mid B_{0}\right] P\left[B_{0}\right] \\
& =0.5 \frac{\alpha}{2} e^{-\alpha}+0.5 \quad \frac{\alpha}{2} e^{-\alpha}=\frac{\alpha}{2} e^{-\alpha}
\end{aligned}
$$

4.67
ot a)

$$
\begin{aligned}
& F_{y}(x+N \leq y \mid x=+1)=F_{N}(y-1) \\
& F_{y}(x+N \leq y \mid x=-1)=F_{N}(y+1) \\
& f_{y}(y \mid x=+1)=f_{N}(y-1)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(y-1)^{2} / 2 \sigma^{2}} \\
& f_{y}(y \mid x=-1)=f_{N}(y+1)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(y+1)^{2} / 2 \sigma^{2}}
\end{aligned}
$$

b)

$$
\begin{aligned}
& f_{y}(y \mid x=-1) P[x=-1]>f_{y}(y \mid x=+1) P[x=+1] \quad \text { decide "O" } \\
& \frac{e^{-(y+1)^{2} / 2 \sigma^{2}}}{\sigma \sqrt{2 \pi}}\left(3 p_{1}\right)>\frac{e^{-(y-1)^{2} / 2 \sigma^{2}}}{\alpha \sqrt{2 \pi}} p_{1} \\
& 3 e^{-(y+1)^{2} / 2 \sigma^{2}} e^{(y-1)^{2} / 2 \sigma^{2}}>1 \\
& 3 e^{-y^{2}-2 y-1+y^{2}-2 y+1 / 2 \sigma^{2}}>1 \\
& 3 e^{-4 y / 2 \sigma^{2}}>1 \\
& \frac{-4 y}{2 \sigma^{2}}>\ln \left(\frac{1}{3}\right) \\
& y<-\frac{\sigma^{2}}{2} \ln \left(\frac{1}{3}\right) \quad \text { decide "O" } \quad T=-\frac{\sigma^{2}}{2} \ln \left(\frac{1}{3}\right)
\end{aligned}
$$

c)

$$
\begin{aligned}
& P[X+N<T \mid X=+1]=P[N<T-1]=\Phi\left(\frac{T-1}{\sigma^{2}}\right) \\
& P[X+N \geqslant T \mid X=-1]=P[N \geqslant T+1]=\left(1-\Phi\left(\frac{T+1}{\sigma^{2}}\right)\right)
\end{aligned}
$$

d) $P[X+N<T \mid X=+1] P[X=+1]+P[X+N \geqslant T \mid X=-1] P[X=-1]=$

$$
=p_{1} \Phi\left(\frac{T-1}{\sigma^{2}}\right)+\left(1-\Phi\left(\frac{T+1}{\sigma^{2}}\right)\right) 3 p_{1}
$$

$$
\left.\begin{array}{rl}
P\left[X_{1}>x\right] & =Q\left(\frac{x-20}{5}\right) \\
P\left[X_{2}>x\right] & =Q\left(\frac{x-22}{1}\right) \\
P\left[X_{1}>20\right] & =Q\left(\frac{20-20}{5}\right)=Q(0)=\frac{1}{2} \\
P\left[X_{2}>20\right] & =Q\left(\frac{20-22}{1}\right)=Q(-2)=1-Q(2)=0.9722 \\
P\left[X_{1}>24\right] & =Q\left(\frac{24-20}{5}\right)=Q(0.8)=0.212 \\
P\left[X_{2}>24\right] & =Q\left(\frac{24-22}{1}\right)=Q(2)=0.023
\end{array}\right\} \text { pide } t 2
$$

4.69

$$
\begin{aligned}
P[x>10] & =1-P[x \leq 10] \\
& =\sum_{k=0}^{7-1} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t} \\
& =\sum_{k=0}^{6} \frac{10^{k}}{k!} e^{-10} \\
& =0.1301
\end{aligned}
$$

4.85 X : Gaussian, $Y=a X+b, a$ linear combination of X. Y is also Gaussian

$$
\begin{gathered}
E[Y]=a E[X]+b=a m+b=m^{\prime} \\
\operatorname{Var}[Y]=a^{2} \operatorname{Var}[X]=a^{2} \sigma^{2}=\sigma^{\prime 2} \\
a=\sigma^{\prime} / \sigma, \quad b=m^{\prime}-a m=m^{\prime}-m \sigma^{\prime} / \sigma
\end{gathered}
$$

4.90

$$
x= \pm \sqrt{\frac{P}{R}} \quad \frac{d x}{d P}= \pm \frac{1}{2} \frac{p^{\frac{1}{2}-1}}{\sqrt{R}}= \pm \frac{1}{2 \sqrt{R P}}
$$

$$
f_{p}(p)=\left[f_{x}(x)+f_{x}(-x)\right]\left|\frac{d x}{d p}\right|
$$

$$
=\left[f_{x}\left(\sqrt{\frac{P}{R}}\right)+f_{x}\left(-\sqrt{\frac{P}{R}}\right)\right] \frac{1}{2 \sqrt{R P}}
$$

$$
=\left[\frac { 1 } { 2 \sqrt { 2 \pi } } \left(e^{\left.-\left(\sqrt{\left.\frac{p}{R}-1\right)^{2} / 2(2)}+e^{-(-\sqrt{p}-1)^{2} / 2(2)}\right)\right] \frac{1}{2 \sqrt{R P}}}\right.\right.
$$

$$
=\frac{1}{2 \sqrt{2 \pi}} \frac{1}{2 \sqrt{R P}}\left(e^{-(\sqrt{P}-\sqrt{R})^{2} / 2(2 R)}+e^{-(\sqrt{P}-(-\sqrt{R}))^{2} / 2(2 R)}\right)
$$

(4.99)

Exact:

$$
P[|X-m|>c]= \begin{cases}1-\frac{c}{b} & 0 \leq c \leq b \\ 0 & c>b\end{cases}
$$

Chebyshev Bound gives

$$
P[|X-m|>c] \leq \frac{\sigma_{X}^{2}}{c^{2}}=\frac{b^{2}}{3 c^{2}}
$$

c) For the Gaussian random variable $\mathcal{E}[X]=0$ and $\operatorname{VAR}[X]=\sigma^{2}$ Exact: $P[|X-m|>c]=2 Q\left(\frac{c}{\sigma}\right)$
Bound: $P[|X-m|>c] \leq \frac{\sigma^{2}}{c^{2}}$

4.126

$$
\begin{aligned}
R(t) & =P[T>t] \\
& =\sum_{n=0}^{m-1} e^{-\lambda t} \frac{\left.(\lambda)^{n}\right)^{n}}{n!} \quad \text { Erlang. }
\end{aligned}
$$

b)

$$
\begin{aligned}
r(t) & =\frac{-f_{T}(t)}{R(t)} \\
& =\frac{-\lambda^{m} ש^{m-1} e^{-\lambda t}}{(m-1)!} \frac{1}{\sum_{n=0}^{m-1} e^{-\lambda t} \frac{(\lambda t)^{n}}{n!}} \\
& =\frac{-\lambda(\lambda t)^{m-1} /(m-1)!}{\sum_{n=0}^{m-1}(\lambda t)^{n} / n!}
\end{aligned}
$$

