3.90) We want to frise x so that the nth annal is after mme the 2 minter 20% of the tries:

$$
P[N(2) \leq n]=0.90=\sum_{k=0}^{n} \frac{2^{k}}{k!} e^{-2}
$$

By trial ave ems we fuel $n=5$.
3.91

58 a)

$$
P[\text { signal present } \mid X=k]
$$

$$
\begin{aligned}
& =\frac{P[\text { signal present }, X=k]}{P[X=k \mid \text { signal present }] P \text { present }]+P[X=k \mid \text { signal absent }] P \text { [absent }]} \\
& =\frac{\frac{\lambda_{1}^{k}}{k!} e^{-\lambda_{1}} p}{\frac{\lambda_{1}^{k}}{k!} e^{-\lambda_{1}} p+\frac{\lambda_{0}^{k}}{k!} e^{-\lambda_{0}}(1-p)} \\
& =\frac{\lambda_{1}^{k} e^{-\lambda_{1}} p}{\lambda_{1}^{k} e^{-\lambda_{1}} p+\lambda_{0}^{k} e^{-\lambda_{0}}(1-p)}
\end{aligned}
$$

Similarly,

$$
P[\text { signal absent } \mid X=k]=\frac{\lambda_{0}^{k} e^{-\lambda_{0}}(1-p)}{\lambda_{1}^{k} e^{-\lambda_{1}} p+\lambda_{0}^{k} e^{-\lambda_{0}}(1-p)}
$$

b) Decide signal present if P [signal present $\mid \mathrm{X}=\mathrm{k}]>P[$ signal absent $\mid \mathrm{X}=\mathrm{k}]$, ie.,

$$
\begin{gathered}
\lambda_{1}^{k} e^{-\lambda_{1}} p>\lambda_{0}^{k} e^{-\lambda_{0}}(1-p) \\
\left(\frac{\lambda_{1}}{\lambda_{0}}\right)^{k}>\frac{1-p}{p} e^{\lambda_{1}-\lambda_{0}} \quad\left(\lambda_{1}>\lambda_{0}\right) \\
k>\frac{\ln \frac{1-p}{p}+\lambda_{1}-\lambda_{0}}{\ln \lambda_{1}-\ln \lambda_{0}}
\end{gathered}
$$

The threshold T is

$$
T=\frac{\ln \frac{1-p}{p}+\lambda_{1}-\lambda_{0}}{\ln \lambda_{1}-\ln \lambda_{0}}
$$

c)
$P_{e}=P[X<T \mid$ signal present $] P[$ present $]+P[X>T \mid$ signal absent $] P[$ absent $]$

$$
=p \sum_{k=0}^{\lfloor T\rfloor} \frac{e^{-\lambda_{1}} \lambda_{1}^{k}}{k!}+(1-p) \sum_{k=\lceil T\rceil}^{\infty} \frac{e^{-\lambda_{0}} \lambda_{0}^{k}}{k!}
$$

(4.7) $b \underbrace{A_{b}^{y}}_{b} \begin{array}{l}S=\{(x, y): 0 \leq x \leq b, 0 \leq y \leq b\} \\ S_{z}=\{z: 0 \leq z \leq b\}\end{array}]$

$$
\begin{aligned}
P[z & \leq z]=1-\left(\frac{b-z}{b}\right)^{2} \\
& =1-\left(1-2 \frac{z}{b}+\frac{z^{2}}{b^{2}}\right) \\
& =\frac{2 z}{b}-\frac{z^{2}}{b^{2}} \\
& =\frac{z}{b}\left(2-\frac{z}{b}\right)
\end{aligned}
$$

$$
p[z>0]=1
$$

$$
P[z>b]=0
$$

$$
p\left[z \leq \frac{b}{2}\right]=F_{z}\left(\frac{b}{2}\right)
$$

$$
=\frac{1}{2}\left(2-\frac{1}{2}\right)=\frac{3}{4}
$$

$$
\begin{aligned}
P[z & \left.>\frac{b}{4}\right]=1-F_{z}\left(\frac{b}{4}\right) \\
& =1-\frac{1}{4}\left(2-\frac{1}{4}\right) \\
& =\frac{9}{16}
\end{aligned}
$$

$$
\begin{aligned}
& P[X<0]=F_{x}(0) \\
& \begin{aligned}
P\left[\left|x-\frac{1}{2}\right|<1\right] & =P\left[-1<x-\frac{1}{2}<1\right]=P\left[-\frac{1}{2}<x<\frac{3}{2}\right] \\
& =\frac{1}{3}\left(\frac{3}{2}+1\right)-\frac{1}{3}\left(-\frac{1}{2}+1\right) \\
& =\frac{1}{3}\left(\frac{3}{2}+1+\frac{1}{2}-1\right)=\frac{2}{3} \\
P\left[x>-\frac{1}{2}\right] & =1-P\left[x \leq \frac{1}{2}\right]=1-\frac{1}{3}\left(-\frac{1}{2}+1\right)=\frac{5}{6}
\end{aligned}
\end{aligned}
$$

4.20
$F_{z}(z)=2 \frac{z}{b}-\frac{z^{2}}{b^{2}} \quad$ fun prob. 4.7
(a)
$f_{z}(z)=\frac{d}{d z} F_{z}(z)=\frac{2}{b}-\frac{2 z}{b^{2}}=\frac{2}{b}\left(1-\frac{z}{b}\right)$

(b)

$$
\begin{aligned}
p\left[z>\frac{b}{3}\right] & =\int_{b / 3}^{b} \frac{2}{b}\left(1-\frac{z}{b}\right) d z=\frac{2}{b}\left[z\left|-\frac{1}{b} \frac{z^{2}}{2}\right|_{b / 3}^{b}\right] \\
& =\frac{2}{b}\left(b-\frac{b}{3}\right)-\frac{2}{2 b^{2}}\left[b^{2}-\frac{b^{2}}{9}\right] \\
& =\frac{4}{3}-\frac{8}{9}=\frac{4}{9}
\end{aligned}
$$

