(8.1) $\mu=10 \quad \sigma_{x}^{2}=4 \quad n=9$
(a)

$$
\begin{aligned}
& P\left[\bar{x}_{q}<q\right]=P\left[\frac{\bar{x}_{q}-\mu}{\sigma_{x} / \sqrt{n}}<\frac{q-\mu}{\sigma_{x} \sqrt{n}}\right]=P\left[\frac{\bar{x}_{q}-10}{2 / \sqrt{q}}<\frac{q-10}{2 / 3}\right] \\
& =1=Q\left(-\frac{3}{2}\right)=0.0668
\end{aligned}
$$

(b)

$$
\begin{aligned}
P\left[\min \left(x_{1}, \ldots x_{q}\right)>8\right] & =P\left[x_{1}>8\right] P\left[x_{2}>8\right] \ldots P\left[x_{q}>8\right] \\
& =P\left[x_{1}>8\right]^{9} \\
& =Q\left(\frac{8-10}{2}\right)^{9}=Q(-1)^{9} \\
& =0,2112
\end{aligned}
$$

(c)

$$
\begin{aligned}
P\left[\max \left(x_{1}, \ldots, x_{q}\right)\right. & <12]=P\left[x_{1}<12\right] \cdots P\left[x_{9}<12\right] \\
& =\left(1-Q\left(\frac{12-10}{2}\right)\right)^{9}=(1-Q(1))^{q} \\
& =0.2112
\end{aligned}
$$

(d)

$$
\begin{aligned}
& \quad P\left[\left|\bar{x}_{n}-10\right|<1\right]=P\left[\left|\frac{\bar{x}_{n}-10}{2 / \sqrt{n}}\right|<\frac{1}{2 / \sqrt{n}}\right] \\
& =P\left[-\frac{\sqrt{n g}}{2}<\frac{\bar{x}_{n}-10}{2 / \sqrt{n}}<\frac{\sqrt{n}}{2}\right] \\
& =P\left[-1.96<\frac{\bar{x}_{n}-10}{2 \sqrt{n}}<1.96\right] \\
& \Rightarrow \sqrt{n}=2(1.96) \quad n=4(1.96)^{2}=15.366=16
\end{aligned}
$$

(8.1) - continved -

Octave cormmard to generate 100 sayples of groups of 9

$$
>\text { normal_mad }(10,4,9,100)
$$

To find the sample mean eade grous of q ?
$>$ meare (normal_rnd $(10,4,9,100)$
From saugle of 100 eve fornd:
$0,0 \pi=\frac{\pi}{100}$ had values les than 9 ws. 0.0668 theory.
$0.19=\frac{19}{100}$ haed max of groug <12 NS. 0.2112
$0.18=\frac{18}{100}$ had mni of prup $>8 \mathrm{NS} .0 .2112$
mox obtamed using:
$>\max ($ normal_rnd $(10,4,9,100))$
$>\min ($ normal _rnd $(10,4,9,100))$
(8.2) X exponentral $\mu=50 \quad n=25 \quad \sigma^{2}=\frac{1}{\lambda^{2}}=\mu^{2}=50^{2}$
(a)

$$
\begin{aligned}
P\left[\mid \bar{x}_{25}\right. & =50 \mid<1] \\
& =P\left[-\frac{1}{10}<\left\lvert\, \frac{\left|\bar{x}_{25}-50\right|}{50 / \sqrt{25}}<\frac{1}{50 / \sqrt{25}}\right.\right] \\
10 & \left.-50 \left\lvert\,<\frac{1}{10}\right.\right] \\
& =0.07966
\end{aligned}
$$

Q

$$
\begin{aligned}
& P\left[\max \left(x_{1}, \ldots, x_{25}\right) \cdot>100\right]=1-P[\max ()<100] \\
& \quad=1-P\left[x_{1}<100\right] P\left[x_{2}<100\right] \ldots P\left[x_{25}<100\right] \\
& =1-\left(1-e^{-100 / 50}\right)^{25}=1-\left(1-e^{-2}\right)^{25} \\
& \quad=1-9736
\end{aligned}
$$

(c)

$$
\begin{aligned}
& P\left[\min \left(x_{1}, \ldots x_{25}\right)<25\right]=1-P\left[\min \left(x_{1}, \ldots x_{25}\right)>25\right] \\
& =1-P\left[x_{1}>25\right]^{25}=1-\left(e^{-25 / 50}\right)^{25} \\
& =1-e^{-25 / 2}=1-3.73 \times 10^{-6}
\end{aligned}
$$

(d)

$$
\begin{aligned}
& 0.90=P\left[\left|\bar{x}_{n}-50\right|<5\right]=P[\left|\frac{\bar{x}_{n}-50}{50 / \sqrt{n}}\right|<\underbrace{50 / \sqrt{n}}_{1.64}] \\
& \frac{\sqrt{n}}{10}=1.64 \\
& \sqrt{n}=16.4 \quad n=269
\end{aligned}
$$

(e) Using approad in publen 8.1 (but geveratiy exporential sangles)
$0.08=\frac{8}{100}$ sangles wre between 49×50 तs. 0.07966
$0.97=\frac{97}{100}$ sayges of max $>100 \quad$ all samples of min <25
8.49

$$
\begin{array}{ll}
H_{0}: \alpha=30 & n=8 \text { mesimnts } \\
H_{1}: \alpha>30 & \bar{x}_{8}=32 \Rightarrow \sum_{i=1}^{8} N_{i}=256
\end{array}
$$

The expariments involues n messurenuts f a
Prissin radin vaiable. Ne take the sun of the total number of adors $N=\sum_{i=1}^{8} N_{i}$ (equivalut to taky the sajulemean)

Accept H_{0} if $N_{T}<T$
N Poisson with mean
Rejoct to of $W_{T} \geq T$.

$$
\begin{aligned}
& \alpha=5 \%=P\left[\text { Rejeit } H_{0} \mid H_{0}\right]=P\left[N_{T} \geq T \mid H_{0}\right] \\
& =\sum_{k=T}^{\infty} \frac{240^{k}}{k!} e^{-240} \quad \bar{x}_{8}=\frac{1}{8} N \\
& \approx P\left[\frac{\bar{X}_{Q}-30}{\sqrt{30} / \sqrt{8}}>\frac{T-30}{\sqrt{30} / \sqrt{8}}\right]=Q(1,64) \\
& \Rightarrow T-30=\frac{1,64 \sqrt{8}}{\sqrt{30}}+30=30.847 \\
& \bar{x}_{8}=32>30.847 \Rightarrow \text { Rejuet } H_{0} \\
& \alpha=1 \% \quad 1 \%=Q(2.326) \\
& \Rightarrow T=30+\frac{2.326 \sqrt{8}}{\sqrt{30}}=31.201 \\
& \bar{X}_{8}=32>31.2 \Rightarrow \text { Dejit } H_{0}
\end{aligned}
$$

8.101

Any reasonable answers will receive full credit.

