$$
4|16| 18 \mathrm{pl}
$$

żAnplé 6.1

Simplified version of Ex 6.5
1 input line, 1 output line. $\mathrm{P}[$ packet on input line] $=.5$

$$
\begin{aligned}
& \rightarrow \rightarrow \begin{array}{c}
X_{1^{2}}{ }^{*} \text { Pack. } \\
\text { ONTHaT }
\end{array} \\
& \text { ONTHaT } \\
& f(0)=(1)-\frac{-1}{2} \text { oNE. }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{f}(0,0)=1 / 2 \\
& \mathrm{f}(1,1)=0 \\
& \mathrm{f}(0,1)=\mathrm{f}(1,0)=1 / 4
\end{aligned}
$$

50 50

2 input, 1 output line

$$
\begin{aligned}
& f X(0)=1 / 4 \\
& f(1)=1 / 2 \\
& f(2)=1 / 4 \\
& f(3)=0
\end{aligned}
$$

2 input lines and 2 output lines

pdf for \# packets in switch: same as tossing 2 fair coins

Now want \# output packets on lines 1 and 2 given n total packets.

$$
f(x,) \| x)=\frac{x^{!}}{x_{1}^{\prime}!!} \frac{1}{2^{x}}
$$

$$
17 J=n
$$

$$
\begin{aligned}
& f(0,0 \mid \mathrm{n}=0)=1 \\
& \mathrm{f}(0,1 \mid \mathrm{n}=1)=1 / 2=\mathrm{f}(1,0 \mid \mathrm{n}=1) \\
& \mathrm{f}(0,2 \mid \mathrm{n}=2)=1 / 4=\mathrm{f}(2,0 \mid 2) \\
& \mathrm{f}(1,1 \mid 2)=1 / 2
\end{aligned}
$$

Now we can find unconditional probs for output packets

$$
\begin{aligned}
& p(0,0)=p(0,0 \mid 0) p(0)=1 * 1 / 4=1 / 4 \\
& p(0,1)=1 / 2 * 1 / 2=1 / 4=p(1,0) \\
& p(1,1)=p(1,1 \mid 2) p(2)=1 / 2 * 1 / 4=1 / 8 \\
& p(0,2)=p(0,2 \mid 2) p(2)=1 / 4 * 1 / 4=1 / 16=p(2,0) \\
& \text { sum }=1
\end{aligned}
$$

