

You see Y, which is continuous. What's your best guess for X ?
We did that Mon.
New: What's the best divide for y, to separate $x=-1$ from $x=1$?

Easier version of 5.40: sum of 2 independent normal r.v.

$$
X: N(0,1) \quad Y: N(0,1) \quad Z=X+Y
$$

We want f_Z(z)

$$
\begin{aligned}
& \sigma(x)=\frac{1}{\sqrt{20}} e^{-\frac{x^{2}}{2}}-\frac{y^{2}}{2} \\
& V_{y}(y)=\frac{1}{\sqrt{2 \pi}} e \\
& f z(z)=\int f \times(x) \frac{f y}{}(3-x) d x \\
& =\frac{1}{2 \pi} \int e^{\frac{-x^{2}-(3-x)^{2}}{2} d x} \\
& -x^{2}-z^{2}-x^{2}+23 x \\
& =-2 x^{2}+2 x z-z^{2} \\
& { }^{4}-x^{2}+x y-\frac{z^{2}}{2} \\
& =\underbrace{\left.-x^{4}+x y-\frac{3^{2}}{4}\right] \cdot \frac{z^{2}}{4}} \\
& =-\left(x-\frac{3}{2}\right)^{2}-z^{2} / 4 \\
& f(\xi)=\frac{1}{\sqrt{\pi}} e^{-2^{2} / 4} \frac{1}{\sqrt{\sqrt{2 \pi} \pi}} \int e^{-\left(x^{2}-\frac{\xi}{2}\right)^{2}} d x \\
& e^{-\frac{x^{2}}{-x^{2}}}
\end{aligned}
$$

The sum of two indep normal rev. with $s=1$ is a normal riv. with $s=s q r t(2)$ The book exercise assumes they're correlated.
lii indep, then the variances add. for normal.
If they're dependent, there's a range.

One extreme: $Y=-X . \quad$ What is $Z=X+Y$? $\quad Z=0$
$=$ Queer extreme $Y=X \quad Z=2 X \quad s=2$
Non normal dist, e.g., $Y=X^{\wedge}$ 2. Not do that now.

