4/9/18 p1

EYT.3I P 264.
Note that the input and the noise are independent.
(In real world, who knows.)
in

$$
\begin{aligned}
& x_{i}-1 \text { wp } 2 / 3 \\
& 1 p=1 / 3
\end{aligned}
$$

Ne normal mao $\sigma=1$
at $1=x+1$
Wan $P[x=1 \mid y>0]$

$$
P[x=1 \mid<>2] P\left[\begin{array}{c}
1 \\
1>0
\end{array}\right]=
$$

$$
\begin{aligned}
& \{[x=1 \& Y>0]
\end{aligned}
$$

$$
\begin{aligned}
& =P\left[x_{1}=1 \& N>-1\right] \\
& =P\left[Y_{-1}-1\right] P \text { PN>-1] }
\end{aligned}
$$

$=P(P-1)$
$P(x=187>0,1>P \quad Q(-1)$
NE EXT $P[Y>0]$

$$
\begin{aligned}
P[i>0] & =P[y>02 x=1]+ \\
& +P[1>020 x=-1]
\end{aligned}
$$

$P[i>0 \quad 8 X=-1]=$

$$
\begin{aligned}
& P[X+N>0 \& X=-1] \\
& =\rho[\mu>18 x=-1] \\
& =P[N>1] P[X=-1] \\
& \varepsilon Q(1)(1-\rho) \\
& P[y>0]=P\{4 \Delta \partial s x)=1] 7 \\
& P(Y>0 \otimes x=-1] \\
& =Q(-1) p+Q(1)(1-P)
\end{aligned}
$$

For conditional density, formula 5.45 use fig 5.6 on page 240 as an example.
note single variable $f(x)=1 / 6$
x is 1 st die, y is 2 nd die.
$p(x=4, y=4)=2 / 42$ from table.
what is $p(x=4 \mid y=4) ? \quad p(x=4, y=4) / p(y=4)=2 / 42 /(1 / 6)=2 / 7$
note that if dice were independent, it would be 1/6.
Using that table to show equation 5.48:

$$
\begin{gathered}
p(x=6]=\sum_{y=1}^{6} p(x=6 \mid \psi=y) p[-b] \\
p(i)=1 / 6 \\
p[x=6 \mid\}=6]=7 / 7 \\
p\left(x=\frac{1}{3} 17=6\right]=1 / 7 \\
3 \\
f(x=6)=\frac{2}{5} \cdot \frac{1}{6}+5\left(\frac{1}{7}+\frac{1}{6}\right) \\
==\frac{1}{6}\left(\frac{2}{5}+\frac{5}{7}\right)=1 / 6
\end{gathered}
$$

Example 5.33 on page 267
RU. $\mathrm{K} O N H$ HISS JV SERVER
POISSON BAIRAM. β A

$$
P(k)=e^{i \beta^{+}} \frac{1(\beta+)^{k}}{K!}
$$

TIME TD SERVE A HT
EXPONENTAL R UV

$$
\begin{aligned}
& P(x)=\alpha e^{-\alpha x} \\
& \operatorname{adt}(\mathbb{e}(x) \\
& \int_{0}^{\alpha-} \alpha e^{-\alpha x} d x=\left.\frac{\alpha e^{-\alpha x}}{-\alpha}\right|_{0} ^{\infty}=1
\end{aligned}
$$

We want the probability of N more hits during the service time for 1st hit.

