

EX 3, 3', ١ Note that the input and the noise are independent. (In real world, who knows.) wp 7/3 Pi •  $\sim$ pre t J  $\tilde{\phantom{a}}$ -+ Ţ 70 7= X--→ - \ 1 ر

· P(V(1) M/A)  $P(x=1 \times 770) = P(Q(-1))$ NEXT PCY>07 P[[>0 &X=-1]= P ( X4N>D & X= - ) ] 2 P [ N>1 8×=-1] = P[N>1]P[X=-] $\geq Q(1)(1-p)$ Y [4>0] = p[4>0 x X=1]7 P[7>0 x x=-[] z q(-i)p + q(i)(1-p)

|          | F 13 1/6 7/3 14                                                        |
|----------|------------------------------------------------------------------------|
|          |                                                                        |
|          |                                                                        |
| WAN      | NT P[X=1 470]                                                          |
|          |                                                                        |
| \<br>    | P(X=1) [(>)]                                                           |
|          | 6 C 1 > 07                                                             |
|          |                                                                        |
| •        |                                                                        |
|          |                                                                        |
|          |                                                                        |
|          |                                                                        |
| For co   | nditional density, formula 5.45 use fig 5.6 on page 240 as an example. |
| note .   | single variable $f(x) = 1/6$                                           |
| x is     | 1st die, y is 2nd die.<br>=4, y=4) = 2/42 from table.                  |
| wha      | at is $p(x=4 y=4)?$ $p(x=4, y=4) / p(y=4) = 2/42 / (1/6) = 2/7$        |
| note     | that if dice were independent, it would be 1/6                         |
| note     | e that it dice were independent, it would be 1/0.                      |
| Using th | nat table to show equation 5.48:                                       |
|          |                                                                        |
|          |                                                                        |
|          |                                                                        |
|          |                                                                        |
|          |                                                                        |
|          |                                                                        |
|          |                                                                        |
|          |                                                                        |
|          |                                                                        |

P(X=G) = p(X:G|Y=y)p(y)PCiJ-1/6 7726 776 22/7  $\frac{1}{2} \left[ \frac{1}{2} - \frac{1}{2} \right] = \frac{1}{2}$  $\frac{1}{2} \left( \frac{2}{5} + \frac{1}{5} \right) = \frac{1}{6}$ 

Example 5.33 on page 267

FOR # MITS SU SERVER RV. RVE 14/5 A . R. V - XX - KX · KZ Γ CI $\partial$ We want the probability of N more hits during the service time for 1st hit.