

Ex 4.35 pl jo
warmup problem. $\quad Y=2 X \quad d y / d x=2 \quad f_{-} Y(y)=1 / 2 \quad f_{-} X(x)=f _X(y / 2) / 2$
e.g. $f_{-} X(x)=1$ for $0<=x<=1$ then $f_{-} Y(y)=1 / 2$ for $0<=y<=2$
new in 4.35 is that there are 2 values for x for each y .

$$
\begin{aligned}
& \begin{aligned}
& P(x 0<x<x 0+d x)=f X(x 0) d x \\
& P(y 0<y<y 0+d y)=P(2 x 0<x<2 x 0+d y) . \quad d y=d y / d x d x \\
&=f-Y(y 0) d y
\end{aligned} \\
& =P(2 x 0<x<2 x 0+d y / d x d x) \\
& \\
& =f(2 x 0) 2 d x
\end{aligned} \quad \begin{aligned}
& P(y<y 0)=F_{1} Y(y 0) \\
&=P(x<y 0 / 2)=F_{-} X(y 0 / 2) \\
& F_{-} Y(y)=F_{-} X(y / 2)
\end{aligned}
$$

back to 4.35. Since two values of x give each y, to find the probability density for y, we add the probabilities for the two x 's.

$$
\begin{aligned}
& E \times 4.36 \text { p } 80 \\
& y=\cos x \\
& f(x)=\frac{1}{2 \pi} 0 \text { सुटा } \\
& \int f(x)=1 \\
& E(x)=\int_{0}^{2 \pi} x(x) d x \\
& =\frac{1}{2 \pi} \int_{0}^{9 \pi} x=\left.\frac{1}{2 \pi} \frac{x^{2}}{\zeta}\right|_{0} ^{2 \pi} \\
& =\left(\frac{1}{2}--\left(\frac{4 \pi \pi^{2}}{2}\right)=\pi\right. \\
& \text { Tcods } X \\
& \frac{d y}{d x}=-\sin x=\sqrt{1-y^{2}} \\
& f y(y)=\frac{1}{d y / d b x} f_{x}(x)+L 1
\end{aligned}
$$

$$
\operatorname{LAR}[x]=E\left[(x-E[-])^{7}\right]
$$

* shoprcur $E[x]=\bar{x}$

$$
\begin{aligned}
& \operatorname{VAR}(x]=\overline{(x-\bar{x})^{2}} \\
& =\frac{x^{2}}{x^{2}}+2 x \bar{x}+\bar{x}^{2} \\
& =\overline{x^{2}}-\overline{2 x \bar{x}}+\overline{\bar{x}^{2}} \\
& =\overline{x^{2}}-2 \bar{x}^{2}+\bar{x}^{2} \\
& =\overline{x^{2}}-(\bar{x})^{2} \\
& \sigma x=\sqrt{\operatorname{VAR}(x)}
\end{aligned}
$$

$$
\begin{aligned}
& \overline{\left(\frac{x-\bar{x}}{\sigma_{x}} \pm \frac{y-\bar{y}}{\sigma_{y}}\right)^{2}} \geq 0 \\
& \left.\left(\frac{x-\bar{x}}{\sigma_{x}}\right)^{2}\right) \pm 2 \overline{\left(\frac{x-\bar{x}}{\sigma_{x}}\right)\left(\frac{y-\bar{y}}{\sigma_{y}}\right)}+\left(\frac{(y-\bar{y}}{\sigma_{y}}\right)^{2} \\
& =1 \\
& 2 \geq \pm 2\left(\frac{x-\bar{x}}{\sigma_{x}}\right)\left(\frac{y-\bar{y}}{\sigma_{y}}\right) \\
& \mid \geq 1 \\
& \sigma_{x y} \\
& =\sigma_{x y} \\
& \left|\sigma_{x y}\right| \leq 1
\end{aligned}
$$

Ex 5.30 on p 263
$p=$ prob that a defect that is somewhere is in region R. given to you.

If there are a total of k defects, then what's prob of j being in R ?
Bernoulli.

$$
\mathrm{P}(\mathrm{j} \text { defects in } \mathrm{R})=\text { sum that over } \mathrm{k}
$$

$$
\begin{aligned}
& p(\nu)=\frac{p^{j} e^{-\alpha} \alpha}{J!} \sum_{\sqrt{j=j}}^{\infty} \frac{(r p)^{k-j}}{(k-\nu)!} \alpha^{k-j} \alpha^{\omega} \\
& =\frac{(\alpha p)^{v}}{s!} e^{-\alpha \infty} \sum_{k=0}^{(1-p)^{k \omega}} \underbrace{(k \omega}_{(k-j)!} \\
& \begin{array}{l}
\text { Cetnizku) } \\
\text { Now } \sum_{1=0}^{\infty}
\end{array} \\
& p(s)=\frac{(\alpha \gamma)^{\nu}}{j!} e^{-\alpha} \sum_{i=0}^{\infty} \frac{(\alpha(1-\mu))^{i}}{1!} \\
& \sum_{i=2}^{\infty} \frac{x^{1}}{1!}=e^{x} \quad e^{\alpha(1-\beta)} \\
& p^{(v)}=\frac{(\alpha \rho)^{J}}{\nu!} e^{-\alpha \alpha v \alpha-\alpha p}
\end{aligned}
$$

That's Poisson with parameter alpha times p .
j is number of defects in region R
k is total number of defects on the chip, both in and out of R.

