	4/5/18 P)
Er	X435p170
warm	hup problem. $Y=2X$ dy/dx=2 f_Y(y) = 1/2 f_X(x) = f_X(y/2)/2
	e.g. $f_X(x) = 1$ for $0 \le x \le 1$ then $f_Y(y) = 1/2$ for $0 \le y \le 2$
new	in 4.35 is that there are 2 values for x for each y.
P(x0	$($
P(yu f_	Y(y0) dy = P(2x0 < x < 2x0 + dy). dy = dy/dx dx
	= P(2x0 < x < 2x0 + dy/dx dx)
	= f(2x0) 2 dx
	$P(y < y0) = F_Y(y0)$ = $P(x < y0/2) = F_X(y0/2)$
	$F_Y(y) = F_X(y/2)$
back t	o 4.35. Since two values of x give each y, to find the probability
	density for y, we add the probabilities for the two x's.

r 80 $) \geq \left(\frac{1}{2} \right) \left(\frac{1}{2}$ $\frac{1}{2}\left(\frac{1}{2}-\left(\frac{471}{2}\right)-\frac{7}{2}\right)$ -42 X 7 (i) = in $|x|_{x}$ 1/04. Mar R 251

proving eqn 5.32. AR[x] = E[Y-E]* SHOPTOUR ELXTEX (7) ~ (X-7)? $\tau \chi^2 - 2 \times \overline{\times} - \overline{\times}$ $r \overline{\chi} - \overline{\lambda}\overline{x} + \overline{\chi}^{z}$ z X² - 2x² + x² = X? - (5) X = (JVAR(X)

2 12-4 7 2 (7 - 又 9-4 5 Г С **3**, 4

Ex 5.30 on p 263

p = prob that a defect that is somewhere is in region R. given to you.

If there are a total of k defects, then what's prob of j being in R? Bernoulli.

ט \propto P(k total defects of which j are in R) =

P(j defects in R) = sum that over k

2 Æ KEJ

 $\propto \alpha^{\chi_{j\xi}}$ J $\propto \leq (1-p)$ (K)° C ≺ **, 1 £ . (1-Z KIJ (K <u>[</u> \bar{v}] ∞ ſ? - 2 _ ひ

- ~ P \mathcal{O} That's Poisson with parameter alpha times p. j is number of defects in region R k is total number of defects on the chip, both in and out of R.