

$$
\begin{aligned}
& { }^{\text {nosing }(x, y, y)}=2 e^{-x} e^{-y} 2 \\
& 1 \text { me } \quad \min (x, 1-x) \leq x \leq y \\
& A=\int_{0}^{\infty} \int_{0}^{1} 2 e^{-x-y} d y d x \\
& A=2 \int_{0}^{2} e^{-x} \int_{0}^{\pi \int_{(x, x+x)}} e^{-y} d y d x \\
& A=2 \int_{0}^{1} e^{-x}\left(1-e^{-\min (x, x-x)}\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& \left.A=2 \int_{0}^{1} k^{-x}-e^{-x-\operatorname{nu}(x, 1-x)}\right)^{3} 4 \\
& \int_{0}^{1} e^{-x}=-\left.e^{-x}\right|_{0,1 / 2} ^{1} 1-e^{-1} 1 \\
& A^{0}=2\left(1-e^{-1}\right)=2 \int_{0}^{0,1}{\underset{e}{2}}_{\left.e^{-2 x}\right)_{12}}^{e^{-2 x}-2 \int e^{-1} e^{1 / 2}} \\
& \left.\frac{e^{-2 x}}{-2}\right|_{0} ^{1 / 2}-e^{-1} \\
& \text { erv } \int_{0}^{1} \\
& 1-e^{-2} \\
& A=2-2 e^{-1}+1-e^{-2}-e^{-1}=3-3 e^{-1}-e^{-2} \\
& \text { Idsiggee wht book. whois songe } \\
& \text { A }>1=>\text { I'm wrong. } \\
& \text { Student exercise: find my error. }
\end{aligned}
$$

Ex 5.18 on p 253. contour lines for $f(x, y)$

Eqn 5.18 defines an official 2 variable normal dist.
0 is correlation between x, y
$-1<=$ rho $<=1$
0 : no correlation
-1: perfect negative corr e.g. $Y=-X . \quad Y=-3 X$
1: perfect positive corr.
e.g. $Y=X, Y=5 X$

Variables could be dependent but uncorrelated since correlation is a linear property.

x, y not correlated over [-1,1]

E[function of 2 rev.]
real world example: you want to know expected value of after-tax profit on numbers game.
power to move a ship is cubic in speed
ship's speed is riv. What's expected fuel consumption?

$$
\operatorname{COV}[x, y]=E[(X-E[X])(Y-E[Y])]
$$

$$
\begin{aligned}
& =E\left[x \psi-X E[Y]-Y[X] f i[x] E\left[\begin{array}{l}
-\lambda
\end{array}\right]\right. \\
& \rightarrow E[X Y]^{5.30}
\end{aligned}
$$

Loss of precision in computation: 5.30 may be subtracting almost equal large numbers and so lose significant digits.
5.29 is numerically better.

Or, do 5.30 in double precision.

$$
\text { S.30'rovi } \frac{\sum x_{n} y_{e}}{N}-\left(\frac{\sum x_{u}}{N}\right)\left(\frac{\sum 5 / e}{N}\right)
$$

