	4/2/18 07
	Enrichment section n=1,000,000 p=q=.5 m=np= 500,000 s=sqrt(npq) = 500
	Example of normal approx.
	P[more than 1,001,000 heads] = 0
	P[more than 501,000 heads] ?
	501,000 is m+2s That prob is 1- cdf for 2 in normal table: 0.023
My blog	, section 3, q 2:
	Expected $\#$ heads = 1,000,000 $*$.5005 = 500,500.
	P[more than 500,000 heads]?
	Here, m=500,500. n=1,000,000 s=500. (really, 499.99975)
	500,000 = m-s.
	$P[more than 500,000] = 1-F_N(-1) = .84$
section 3	3, q 3:
	·
	999,000 coins are fair. 1000 always heads.
	n=999,000. m=499,500. s=500. <- ignoring 1000 fixed coins.
	To get 500,000 total heads, we need 499,000 of the 999,000 fair coins to be heads.
	499,000 = 499,500-500 = m-s.
	$P[500,000 \text{ or more total heads}] = 1-F_N(-1) = .84.$
	1
	/ / z / z / z
	1/2/1/2/16/2012

-X :M C Prob 5.17 on page 253. \mathcal{N} je E 2 D L C ᠳ**ん(X,1√) \bigcap -min X ĩ \checkmark

١ -x-nu/x,1-x) C χ 汷 Q ĩ 10, 7, ì 0 51 - 入入 < R J I disagree with book. Who is right? A>1 => I'm wrong.Student exercise: find my error.

5 E[function of 2 r.v.] you want to know expected value of after-tax profit real world example: on numbers game. power to move a ship is cubic in speed ship's speed is r.v. What's expected fuel consumption? COV[x,y] = E[(X-E[X])(Y-E[Y])]Ē ۲ 5.30 Loss of precision in computation: 5.30 may be subtracting almost equal large numbers and so lose significant digits. 5.29 is numerically better. Or, do 5.30 in double precision. (1)