$$
\begin{aligned}
& \text { o(D EXAM } 1 / d \\
& P(0 \text { D }=(A T s) \\
& P(k)=\frac{e^{\lambda} \lambda^{k}}{k!} \\
& \lambda=\alpha: 4 \lambda^{0} \\
& P(0)=\frac{e^{-4} 4}{0!}=e^{-4}
\end{aligned}
$$

time between decays is exponential (if decays are indef)
4 decays per msec -> $1 / 4 \mathrm{msec}$ between decays

$$
\lambda=\frac{1}{4}
$$

$$
f^{(n)}=\lambda e_{\infty}
$$

$$
\begin{aligned}
& a+=\int^{+i k} \int f^{2} i \int_{0}^{\infty} \lambda e^{\lambda \lambda y} d x \\
& =\lambda \int e^{-\lambda x}=\left.\frac{\lambda e^{-\lambda x}}{-x}\right|_{0} ^{\infty} \\
& =e^{0}-e^{-\infty}=1-0=1 \\
& E[x]=\int_{0}^{\infty} x\left(x_{x}\right) d x \\
& =\lambda \int_{0}^{\infty} x e^{-\lambda x} d x
\end{aligned}
$$

$$
\begin{aligned}
& x i \cup[q 1] 3
\end{aligned}
$$

$$
\begin{aligned}
& \int_{1}^{\infty}(x) d x
\end{aligned}
$$

$$
\begin{aligned}
& N\left[\mu=0, \sigma=\frac{1}{\sqrt{r}}\right] \\
& (x)=\frac{1}{\sqrt{\pi \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \\
& =\frac{1}{\sqrt{\pi \pi}} \frac{1}{\sqrt{\pi}}
\end{aligned} e^{-x^{2}}-x^{2} .
$$

