$$
\begin{aligned}
& 3 / 22 / 18 \mathrm{Pl} \\
& S_{2} \sum_{k=0}^{\infty} a^{k}=\frac{1}{1-a} \\
& S=1+a+a^{2}+a^{3} 4 \\
& =1+a\left(1+a+a^{2}+\cdots\right) \\
& =1+a S \\
& \begin{array}{l}
S(1-\alpha)=1 \\
S=\frac{1}{1-a}
\end{array} \\
& a=-\frac{1}{2} \quad S=\frac{1}{1-\frac{1}{2}} \cdot \frac{2}{3} \\
& 1-\frac{1}{2}+\frac{1}{4} \cdot \frac{1}{8}+\frac{1}{16}-\frac{1}{32}-\cdots
\end{aligned}
$$

$$
\begin{aligned}
& \left.\sum_{k=0}^{\infty}(1-p)\right)^{k}{ }^{2} \\
& =(1-p) \frac{1}{(1-p)}=1
\end{aligned}
$$

$$
\begin{aligned}
& \sum k a^{R}= 0 a^{6}+ \\
& 1 a^{r}+ \\
& a^{4}+a^{2} \\
&+a^{4}+a^{3}+a^{3} \\
&+a^{4}+a^{4}+a^{4}+a^{4} \\
& 1 \\
& \sum a^{k}-a a^{k}+a^{2}\left\langle a^{k}+1\right. \\
&= \frac{1}{1-a}+\frac{a}{1-a}+\frac{a^{2}}{1-a}+\cdots \\
&= \frac{1}{1-a}\left(1+a+a^{2}+\cdots\right) \\
& \therefore\left(\frac{1}{1-a}\right)^{2} \quad(\cos 4 x a \\
& \frac{a}{1-a)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
f(k) & =(1-p) p^{k} \\
E[f] & =\sum k(1-p) p^{k} \\
& =(1-p) \sum k p^{2} \\
& =(1-p) \frac{p}{(1-p)^{2}} \\
& =\frac{p}{1-p}
\end{aligned}
$$

$$
\begin{aligned}
& E X 5.9 \quad 5 \\
& f(N)=(1-p) p^{N} \\
& \alpha^{2} N<\infty \\
& N_{2} q^{M}+\lambda \quad 0^{2}=\pi<M \\
& \sum_{k=0}^{m-1} a^{k}=\sum_{0}^{\infty}-\sum_{m}^{\infty} \\
& i \frac{1}{1-a}=a^{m}\left(\frac{1}{1-a}\right)=\frac{1-a^{M}}{1-a} \\
& e_{\partial} a=2 \quad M=4 \\
& \sum_{0}^{3} \alpha^{k}=1+2+4+8=15 \\
& \frac{1-2^{4}}{1-2}=\frac{-11}{-1}=15
\end{aligned}
$$

$$
\begin{aligned}
& F / 65 \cdot 6 \\
& F(3,3)=\frac{12}{42} \\
& F_{x}(3)=F_{x y}^{\sigma}(3, \infty)=\frac{21}{42}=\frac{1}{2} \\
& F_{y}(2)=F_{x y}(\infty, 2)=\frac{14}{42}=\frac{1}{3}
\end{aligned}
$$

EX $5: 13$

$$
\begin{aligned}
& p\left(x_{2} \leq x \in X_{H,} \quad Y_{1} \leq Y \leq Y_{H}\right) \\
& =\frac{R\left(x_{1-1},+\right)-F\left(x_{2}, Y_{2}\right)}{\left.T-F\left(x_{2}\right), Y_{2}\right)}
\end{aligned}
$$

$$
E x 5.15
$$

$$
\begin{aligned}
f(x) & =\int_{-\infty}^{\infty} f(x, y) d y \\
& =10 \leq x=1 \\
F_{x}(x) & =F(x, \infty)
\end{aligned}
$$

Definitions of X and Y being independent
$f_{-} X(x) f_{-} Y(y)=f_{-} X Y(x, y)$
$F_{-} X(x) F_{-} Y(y)=F_{-} X Y(x, y)$

