$$
\begin{aligned}
& 319118 \mathrm{p}^{1} \\
& f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} \\
& \mu=0 \quad \sigma=1 \\
& A=\frac{1}{\sqrt{3 \pi}} \int_{-\infty}^{\infty} e^{-\frac{x^{2}}{\frac{2}{2}}} d x \\
& A=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\frac{y^{2}}{2}} d y
\end{aligned}
$$

$$
\begin{aligned}
& y_{i} \cos \sin \theta
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
x^{2}+y^{2}=\rho^{2} \\
x=\rho+2 z^{4}
\end{array} \\
& Y \tau \operatorname{cosin} \\
& \frac{d x}{\partial \rho} i \cos ^{\theta} \frac{d x}{d \theta}=-\beta_{1} x^{t} \\
& \frac{d y}{\partial \rho}=\sin \theta \quad \frac{\alpha v}{\delta \theta}=\rho \cos \theta \\
& J_{i}\left|\begin{array}{ccc}
\cos t & -\rho \sin x^{2} \\
\sin x & \rho \cos \theta
\end{array}\right| \bowtie \int \\
& d \times d \text { I }=\int \operatorname{d\rho d\theta }
\end{aligned}
$$

how to find $\mathrm{q}(-1)$? It's not in table. Integral from -inf to $-1=$ int from 1 to inf. $=.16$. Int from -1 to inf is 1 - (int from -inf to -1$)=1=.16=.84$.
That table has $\mathrm{m}=0, \mathrm{~s}=1$.

homework: book 4.85 on p 223.
I'll do a special case. x is $N(0,10) . \quad y$ is $N(100,100)$.
$y=a x+b$. What are a, b ?
sigma scales by a, so $a=10$.
mean transforms to mean

$$
100=10 x+b \quad b=100
$$

$$
y=10 x+100
$$

example 2 transform SAT $\mathrm{N}(500,100)$ to standard $\mathrm{N}(0,1)$.

$$
\begin{aligned}
& y=.01 x-5 . \\
& 500->0 .
\end{aligned}
$$

$N(m, s)$ means normal dist with mean m and std s.

$$
4.90
$$

$$
\operatorname{var}=2->\quad s=1.4
$$

do this for $R=1$.

$$
\begin{aligned}
& y=x^{\wedge} 2 \\
& d y / d x=2 x
\end{aligned}
$$

$$
F(x)=\operatorname{prob}(X<=x)
$$

$$
F(y)=\operatorname{prob}(Y<=y)=\operatorname{prob}\left(Y<x^{\wedge} 2\right)
$$

Example 5.5 p 253

