Reliability for $\mathrm{U}[0,10$]

$$
\begin{aligned}
f(x)= & .1 \text { in } 0 . .10 \\
F(x)= & x / 10 \text { for } 0<=x<=10 \\
& 0 \text { for } x<0 \\
& 1 \text { for } x>10
\end{aligned}
$$

$f(x) \cdot d x=$ prob dies between time x and time $x+d x$ for small $d x$
event: object dies
$P[$ dies between 1 and 2$]=f(x) d x=.1 * 1=.1$
$\mathrm{P}[$ dies between times a and b$]=$

$$
\int_{0}^{b}(y) d x
$$

9
Max of 2 riv.
Your car has 2 headlights. You can drive at night so long as at least one works. Analyze this. What's the prob dist of the max life?
r.v. of hst headlight dies is $U[0,100]$. Call that riv. X.
Y is rev. for $2 n d$.
define $Z=\max (X, Y)$.
def of $F_{-} Z(z)=P[Z<z]=P[\max (X, Y)<z]=P[X<z \& Y<z]$
assuming two bulbs are independent

$$
\begin{aligned}
& P[X<z \& Y<z]=P[X<z] P[Y<z]=F_{-} X(z) F_{-} Y(z) \\
& F_{-} Z(z)=F _X(z) F_{-} Y(z) \\
& \begin{aligned}
f_{-} X(x)=.01 \text { so } F_{-} X(x)= & x / 100 \text { for } 0<x<100 \\
= & F_{-} Y(x)
\end{aligned}
\end{aligned}
$$

$$
F _Z(z)=z^{\wedge} 2 / 10000
$$

$$
\text { for } 0<z<100
$$

$$
f _Z(z)=z / 5000 \text { for } 0<z<100
$$

uppercase P means probability. Uppercase E means expected

$$
\int_{b}^{100} \frac{z^{2}}{5 b 00} d z=\left.\frac{z^{3}}{1560 \nu}\right|_{\partial} ^{5}
$$

$$
1,1,1
$$

define Z to be max of N uniform riv. $\mathrm{U}[0,1]$

$$
\begin{array}{ll}
F_{-} Z(z) & =z^{\wedge} N \\
f_{-} Z(z) & =N^{*} Z^{\wedge}(N-1) \\
E[Z]=N /(N+1)
\end{array}
$$

I have a bulb and a spare. I use the 1st until it fails than swap in the 2 nd and use it until it fails. Then start worrying about the grue.
X, Y are r.v. for two bulbs. Define $Z=X+Y . \quad X, Y$ defined to be $U[0,1]$.
What is $f_{-} Z(z)$?
Aside: let r.v. be discrete. Each r.v. is \# heads for 1 coin toss.
That's Bernoulli.
$Z=$ sum of N coins. That's Binomial. /aside

suspend this until next class. I'll get a nice motivating example.
failure rate: assume X : $U[0,1]$.

