$$
\begin{aligned}
& \int_{0}^{-\lambda t} \\
& \int_{0}^{\infty} f(f) d t=1 ? \\
& \int \lambda e^{-\lambda t} d t \\
& =\left.\frac{\lambda e^{-\lambda t}}{-\lambda}\right|_{0} ^{\infty} \\
& =e^{-\lambda 0}-e^{-\lambda \infty}=1 \\
& 1-0
\end{aligned}
$$

$$
\begin{aligned}
& F(x)=\int_{0}^{x} \lambda e^{-\lambda x} d t \\
& =\left.\frac{\lambda e^{-\lambda x}}{\lambda}\right|_{0} ^{x} \div 1-e^{-\lambda x} \\
& \bar{F}(t) \\
& (d f . \&
\end{aligned}
$$

r.v. is time until widget dies. Assume it's exponential. (not realistic).
want prob at least 1 of 3 widgets is still alive in 6 months. continue this Thurs

X is rev. for person's height in meters. Making things up.
Assume X is uniform in [.7, 1.3]
f_X $(x)=1 / 6$ if $.7<x<1.3$
0 otherwise
We want to use ft not meters.
Define new riv. $Y=X * 3.3$
we want $f_{-} Y(y)$? $\quad f_{-} Y(y)=f_{-} X(X * 3.3) / 3.3$
eg. prob height between 1 and $1.1 \mathrm{~m}=.017$ prob height between 5.9 and 6 ft : use scale
\qquad
Use ft and yards (1 yard $=3 \mathrm{ft}$)
X is riv. for height in yards. Continuous dist.
X uniform in [.7, 1.2]
$\mathrm{f}_{-} \mathrm{X}(\mathrm{x})=2$ if x in . 7 .. 1.2 0 otherwise
$\cdot \operatorname{Prob}[x<X<x+d]=f _X(x) d$

$\operatorname{Prob}[1<X<1.1]=2^{*} .1=.2$
Want to use ft not yards. Define new rev. $Y=3 X$
$f_{-} Y(y)=f_{-} X(y / 3) / 3=2 / 3$ if $2.1<y<3.6$ eqn 4.67 on p 177

$\mathrm{P}[$ height between 3 and 3.3 ft$]=2 / 3 * .3=.2$.

$\int 1 s t$
3rd: skewness

4th kurtosis how boxy it is

