2/22/18 pl
review q 4: 3 *.6 * . 6 *. 4

A = event that you picked 6 -sided die
$\mathrm{p}(\mathrm{A})=1 / 2$
2 = event that you threw 2

$$
\begin{aligned}
& p(2 \mid A)=1 / 6 \\
& p\left(2 \mid A^{\prime}\right)=1 / 12 \\
& \mathrm{P}(2 \text { and } A)=p(2 \mid A) p(A)=1 / 12 \\
& p\left(2 \text { and } A^{\prime}\right)=p\left(2 \mid A^{\prime}\right) p\left(A^{\prime}\right)=1 / 24 \\
& p(2)=1 / 8 \\
& p(A \mid 2) ? p(A \mid 2) p(2)=p(2 \text { and } A) \\
& p(A \mid 2)=2 / 3
\end{aligned}
$$

7 you think
8 even: $24681012 \quad \mathrm{p}=1 / 2$
mut of 3: $36912 \quad p=1 / 3$
both: $612 \quad p=1 / 6$
indep? definition A, B indef iff $p(A$ and $B)=p(A) p(B)$ yes

What if $S=\{1,2, \ldots .10\}$
even: 246810
milt of 3:369

$$
\text { both: } 6
$$

$$
\begin{aligned}
& p=1 / 2 \\
& p=3 / 10 \\
& p=1 / 10
\end{aligned}
$$

indep? no
text prob 2.99 on p 91
$\mathrm{p}=.05$ of a particular chip being bad
if I buy 8 chips p(all good)? .95^8
if I buy 9 chips p(exactly 8 good) $=(9$ choose 1$) .95^{\wedge} 8.05$
$=.29$
$p(I$ had to buy 9 to get 8 good ones $)=(8$ choose 1$) .95^{\wedge} 8.05$
$p(1$ had to buy 10 to get 8 good $)=(9$ choose 2$) .95^{\wedge} 8.05^{\wedge} 2$
$p(1$ had to buy n to get 8 good $)=(n-1$ choose 7$) .95^{\wedge} 8.05^{\wedge}(n-8)$

Iclicker 3. $1 \quad \mathrm{p}(1 \mathrm{bad})=1 \mathrm{e}-10$.
if all indep, approx $p($ any 1 of 9$)=9 * 1 e-10$.
next level of accuracy, use binomial.
9* $1 \mathrm{e}-10 \wedge 1(1-1 \mathrm{e}-10)^{\wedge} 8$
to approx $(1-e)^{\wedge} n=1-n e$ if n big and e small and ne small.
$(1-e)^{\wedge} n=1-n e+(n$ choose 2$) e^{\wedge} 2-(n$ choose 3$) e^{\wedge} 3 \ldots$
here e is any small number not $2.718 .$.
$.99^{\wedge} 10 ?(1-.01)^{\wedge} 10=1-10^{*} .01+45 * .0001+\ldots$.
$=1-.1+.0045-\ldots$
X is a r.v. uniform in $[10,20]$.

$$
f(x)=\begin{aligned}
& 0 \text { if } x<10 \\
& .1 \text { if } 10<x<20 \\
& 0 \text { if } x>20
\end{aligned}
$$

$$
\int_{a}^{p(a<x<b)=} \int_{1}^{0} f(x) d x
$$

$$
P\left(12<x^{2} 18\right)=\int_{12}^{18} f(x) d x
$$

$$
\int_{12}^{12} 18 \cdot 1 d x
$$

$$
P(5 \leq x+15)=\int_{5}^{=6} f(x) d x
$$

$$
=.5
$$

