iclicker 2: using binomial
$\mathrm{p}=$ prob bad $=.001=1000 / 1000000$
n=5
$5 \ll 1000000$ so ignore that it's selection w/o replacement
$\operatorname{prob}(\mathrm{k}$ bad of 5$)=(5$ choose $k) \mathrm{p}^{\wedge} \mathrm{k} \mathrm{q}^{\wedge}(5-\mathrm{k})$
$\operatorname{prob}(0 \mathrm{bad})=1.999 \wedge 5=.995$
$\operatorname{prob}(1 \mathrm{bad})=\left(5\right.$ choose 1) $\mathrm{p}^{\wedge} 1 \mathrm{q}^{\wedge} 4=5 * .001 * .996=$ very small
prob(1 bad) is much less than prob(0 bad) so ignore it.
$\operatorname{prob}(0$ or 1 bad $)=.995$
approximation I used: (1-e $)^{\wedge} n$ approx $=1$-ne if ne $\ll 1$
$.999^{\wedge} 10=.990$ approx
$(1-e)^{\wedge} n=1-n e+(n$ choose 2$) e^{\wedge} 2-\ldots$

Try the same question using Poisson.
The event is the number of bad widgets.
$p=.001$
$\operatorname{Prob}\left(k\right.$ bad) $=p^{\wedge} k e^{\wedge}(-p) / k!$
$\operatorname{Prob}(0 \mathrm{bad})=1 *(1-\mathrm{p}) * 1=.999$
$\operatorname{Prob}(1 \mathrm{bad})=.001 * .999 * 1=.000999 \ll .999$
p here is lambda in wikipedia or alpha in the text.

Poisson good when there are many possible events, but prob of any one is very small, so expected number is reasonable.
e.g. radioactive decay.

Perhaps there are $10^{\wedge} 24$ atoms. Prob of any one decaying is $10^{\wedge}-20$.
Expected number of decays is 10,000 .

WANT (a, $b+c)_{n}^{n}$
kNow $(a+b)^{n}=\sum_{k=0}^{m}\binom{n}{k}^{k} b^{n-k}$
DY

$$
\begin{aligned}
& a+b+c=(a+b)+c \\
& (a+b-e)^{n_{i}}((a+b)+c)^{n} \\
& =\sum_{k=0}^{n}(k)\left((a+b) k e^{n-k}\right. \\
& =\sum_{i=1}^{k}\binom{k}{1} a^{i} b^{k-i} \\
& =\sum_{k=0}^{n} \sum_{1=0}^{k} \frac{\binom{m}{k}\binom{k}{1} a^{1} b^{k-1} c^{n-k}}{\frac{n^{\prime}}{k!(n-k)!} \frac{k^{+}}{a i(k-1)!}} \\
& \frac{x^{!}}{(n-k)!\Lambda_{1}!(k-1)!}
\end{aligned}
$$

$$
\begin{aligned}
& (a+b+c)^{n}: \sum_{k=D}^{n} \sum_{n=D}^{k} \frac{\left.x!a^{1} b^{k-n}\right)^{3} c^{n-k}(k-1)!}{(a-1!n}
\end{aligned}
$$

q 3.91 on page 139
polsson ainn λ

$$
\begin{aligned}
& P(k)=\frac{\lambda^{2} e^{-\lambda}}{K!} \\
& P(k \mid y E s)=\frac{\lambda_{r}^{k}}{k!} e^{-\lambda_{2}} \\
& P(k \mid N)=\frac{\lambda_{0}^{k}}{k!} e^{-\lambda_{0}} \\
& \begin{array}{l}
P(y=S)=P \\
P(k)=P(K \mid Y E S) P(Y E S)+
\end{array} \\
& =\sqrt{\frac{\lambda_{1}^{k}}{K_{1}} e^{-\lambda_{1}} p+\frac{\lambda_{0}^{k}}{k_{1}^{\prime}} e^{-\lambda_{0}} q} \\
& p\left(4=S(k) p(k)=\left(\rho \left(\frac{k}{\left.4 \tau^{-} j+k\right)}\right.\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\left(\frac{\lambda_{1}}{\lambda_{0}}\right)^{k} e^{-\lambda_{1}} p}{\left(\frac{\lambda_{0}}{\lambda_{0}}\right)^{k} e^{-\lambda_{1}} \rho+\left(e^{-\lambda_{0}} A\right.} \\
& =\frac{\left(\frac{\lambda_{0}}{\lambda_{2}}\right)^{2} e^{\lambda_{0} \lambda_{0}} e}{\left(\frac{\lambda_{1}}{\lambda_{2}}\right)^{2} e^{\lambda_{0} \lambda_{1}} \rho+9}
\end{aligned}
$$

