2/20/2018 p1

iclicker 2	2: using binomial bad = 001 = 1000/1000000
n=5	
5 << 10	00000 so ignore that it's selection w/o replacement
prob(k b	ad of 5) = (5 choose k) $p^k q^{(5-k)}$
prob(1 b	ad) = $(5 \text{ choose } 1) \text{ p}^1 \text{ q}^4 = 5 * .001 * .996 = very small$
prob(1 b prob(0 c	ad) is much less than prob(0 bad) so ignore it. r 1 bad) = .995
approxir	nation I used: (1-e)^n approx = 1-ne_if_ne<<1
000010	~ 000 approx
.999 10	J = .990 approx
(1-e)^n	= 1 -ne + (n choose 2)e^2
Try t	he same question using Poisson.
The	event is the number of bad widgets.
p = .	.001
Prob	$(k \text{ bad}) = p^k e^{(-p)} / k!$
Prob	(1 bad) = .001 * .999 * 1 = .000999 << .999
p he	re is lambda in wikipedia or alpha in the text.
Poisson g	ood when there are many possible events, but prob of any one
e.g. radio	active decay.
Perhaps Expected	there are 10^24 atoms. Prob of any one decaying is 10^-20 .
Expeed	

book 3.51 a (a1 6+c) И pn-k N n is (CK DUI arb-c KEO ト 2 N ا<u>ب</u> ر $\mathbf{\mathbf{Y}}$ m-K K ash Ē KED 12- 1 2 γ L n.k い 1 Ī $\frac{1}{1}$ $(K-\lambda)$ (m-12)

 $\frac{n}{2} \frac{n}{2} \frac{k}{2} \frac{1}{2} \frac{1}$ (a-26-1(1

. q 3.91 on page 139. 15502 $7 \overline{\epsilon} \mathcal{N} \mathcal{N}$ Δ / Σ K 12 \int K'K V 2 ଥ K ' • P É Ł γ [2] 7 1 12 1 L 12 f . / K 2

7 1 2 yrog $\mathcal{A}_{\mathcal{A}}$ λ_1 ε /) J P ~> K と 1 2 20 1 Pt 0

page 6 ۲ for die cdf: ť ATNOT 2 NUVIEN R RC ŕ L LUU γÙ ()TISMP