	2/15/2018 pl
	Conditional probability ctd
	Tossing a die
	$x = we saw an even number \{2,4,0\}$ $x = we saw 2$ $P[x-2] = 1/6$
	$P[C] = \frac{1}{2}$
	We need prob we got a 2 and $C = 1/6$
	$\overline{ \left(\begin{array}{c} A \end{array} \right)}$
	$\left(\left(\frac{1}{2} \right) \right) = \left(\frac{1}{2} \right)$
	$(\gamma)(\gamma)G$
Motiva will liv Huma	ating ex 3.24: Prob that a light bulb that is already 100 hours old e another 10 hours. n life expectancy: Live expect given that you've gotten to 20 years

3 Variance of r.v. Bernoulli outcomes are 1 w.p p, 0 w.p. q=1-p $\begin{array}{l} \mathsf{E}[x] \ = \ 1 \ \mathsf{p} + 0 \ \mathsf{q} = \ \mathsf{p} \\ \mathsf{VAR}[x] \ = \ \mathsf{E}[x2] \text{-} \ \mathsf{E}[x]2 \ = \ 1 \ \mathsf{p} \text{-} 0 \ \mathsf{q} \text{-} \ \mathsf{p}^{2} \ = \ \mathsf{p} \text{-} \ \mathsf{p}^{2} \ = \ \mathsf{p} \ (1\text{-}\mathsf{p}) \ = \ \mathsf{p} \ \mathsf{q} \end{array}$ spread biggest at p=1/2 Binomial r.v. p 115 abou - K K 入) K m-K KED 1 _____ X 7 N カーよ K 1-1 K-1 n-k

	Poisson 5 k - x k - x k - x k - x k - x k - x k - x
D	alpha is the only parameter. Its the mean also variance.
Ľ	$\cdot \cdot $
	RED
	JEFINJION

POISSON MEAN • • $^{2}V_{2}$ C k) t ¢ FED ۱۰ (k-1) l (L -] 2 PX . R ~

12 2 \hat{C} ~ l 12= Z (و) - 2). (1_ É ž R 1 1 1 2~ SE JU (--- (AN E (JNONED, CA

Poisson ctd

E[x] = a, VAR = a STD = sqrt(a)

approx: $P[E-std \le x \le E+std] = 2/3$

For Poisson, this central interval w.p 2/3 is [a-sqrt(a), a+sqrt(a)]

As a proportion, it gets smaller as a gets bigger.

WRMAL

All reasonable dists converge to the normal dist as n gets big. It happens surprisingly quickly. def "reasonable": dists for which this is true. dists with finite moments

Binonial dist starts looking like a Poisson for large n and fixed np =a . Poission starts looking like a normal dist for large n.

Expected time between consecutive decays is geometric r.v.

Poisson scales: If the expected number of decays in 1 second is 5, then expected number in one minute is 5*60=300. 8