Numbers are items in my wiki.
random experiment: toss coin
outcomes: $\{\mathrm{H}, \mathrm{T}\}$
assign a number to each outcome.
Call that a random variable.
H-> $1 \quad \mathrm{~T}->0$

2 outcomes: $\{$ TH, TH, TH, ...\} ~
$X(T T)=0 \quad X(T T H)=1 \ldots$.
from 1st experiment (3 tosses) $x=0$
next: $x=3$
next: $x=1$..
$3 \quad \mathrm{Y}(\mathrm{HHH})=8 \quad \mathrm{Y}(\mathrm{HTH})=2 \quad \mathrm{Y}(\mathrm{HTT})=0$
$6 \quad$ Outcomes have prods. $\mathrm{p}(\mathrm{HTT})=1 / 8$
Random variable has probs.
X : \# heads
$P(X=0)=1 / 8$
$P(X=1)=3 / 8$
$P(X=2)=3 / 8$
prob mass function (PMF)
$P(X=3)=1 / 8$
Can now do math. E.g. expected value.
$0^{*} 1 / 8+1^{*} 3 / 8+2^{*} 3 / 8+3^{*} 1 / 8=1.5$

10
probs

possible values of random var
12 another uniform random var: toss a 6-sides die
$p(1)=1 / 6 p(7)=0 \quad p(3)=1 / 6$
uniform integer from 1 to 6
13 Bernoulli: unfair coin.
2 choices. prob p.
14.1 $\mathrm{pX}(\mathrm{k}):$ probabili ty that the random var X has value k

In this particular case, X is a random variable following a geometric distribution with parameter p.

The random variable X in 14.1 is unrelated to X in 12.3 for example.

Geometric dist example. Fair coin $p=1 / 2$
q defined $=1-p$
$\mathrm{pX}(\mathrm{k}) \mathrm{q}^{\wedge}(\mathrm{k}-1) \mathrm{p}=2^{\wedge}(-\mathrm{k})$
p_X(1) $=1 / 2$
$P(2)=1 / 4$
$p(10)=1 / 1024$
X is the random variable that gives the number of tosses until the 1st head.
another geometric dist example. black pixels on page
$Y=$ random var for number of pixels along line until
1st black pixel.
App: run-length encoding for fax.
$\mathrm{p}=.01$
$\mathrm{Y}(\mathrm{k})=\mathrm{q}^{\wedge}(\mathrm{k}-1) \mathrm{p}=.99^{\wedge}(\mathrm{k}-1)^{*} .01$
$p_{-} \mathrm{Y}(1)=.01 \quad \mathrm{p}_{-} \mathrm{Y}(2)=.99 * .01=.0099$
In these examples, geom probs decrease towards 0 .
binomial rev.
ex. toss coin twice $n=2 \quad p=1 / 2$
here X is r.v. of \# heads from 2 tosses.

$$
p _X(1)=(2 \text { choose } 1) p^{\wedge} 1 q^{\wedge} 1=1 / 2
$$

16 as n increases graphs becomes similar a 'normal'
distribution.

Cauchy

spin a spinner. r.v. is where the projected pointer hits x-axis.
$p(x)=c /\left(1+x^{\wedge} 2\right) \quad$ (I think)
integral is 1 . always nonnegative.

diverges.
Cauchy dist does not have a mean or any other moment.

tails don't converge to 0 quickly enough.
Physical meaning of not having a mean. This is getting ahead a little but it's important.

Think about tossing coin n times and recording number of heads. About $n / 2$ but fluctuates every time you toss n coins.

Foss coin 10 times, and do this several times.
\# heads fluctuates around 5 .
Next, toss coin 100 times and repeat.
\# heads fluctuates around 50. But, as a fraction of 100, these observations are more tightly clustered around 50.

The larger n gets, the smaller the percentage fluctuation
from the mean is.
called a law of large numbers.
NOT TRUE for Cauchy.
Perhaps not true for stock market.
Tails of distribution are too fat.

St Petersburg paradox: bet until you win, doubling each time. When you win, that win pays all previous losses and still gives a profit. What's wrong?

Mean of Bernoulli, for $p=1 / 2$
$p(0)=p(1)=1 / 2 \quad$ mean $=1 / 2 * 0+1 / 2 * 1=1 / 2$

Mean of uniform [1.6]:
$p(1)=p(2)=1 / 6$
mean $=1 / 6 * 1+1 / 6 * 2 \ldots=3.5$

19 Mean of binomial for $n=3, p=.1$
mean $=(3$ choose 0$) .9^{\wedge} 3 * 0$
(3 choose 1) .9^2.11+
(3 choose 2).9.1^2 2
$+(3$ choose 3).1^3 3
$=0+.243+.054+.003=.3 \quad$ (makes sense)
general rule for binomial. \quad mean $=n p$

