	2/9/10 - 1
Number	z/8/18 pi s are items in my wiki.
	randam ovnariment, tass sain
1	outcomes: {H,T}
	assign a number to each outcome. Call that a random variable.
	H->1 T->0
С	
2	X(TTT) = 0 X(TTH) = 1
	from 1st experiment (3 tosses)x=0
	next: $x=3$ next: $x=1$
3	Y(HHH) = 8 Y(HTH) = 2 Y(HTT) = 0
6	Outcomes have probs. $p(HTT) = 1/8$
	Random variable has probs.
	P(X=0) = 1/8
	P(X=1) = 3/8 P(X=2) = 3/8 prob mass function (PMF)
	P(X=3) = 1/8
	Can now do math. E.g. expected value.
	$0^{1/8} + 1^{3/8} + 2^{3/8} + 3^{1/8} = 1.5$
	318m PLC
10	
probs	
•	
	Lit of a
	× 3
	possible values of random var
12	another uniform random var: toss a 6-sides die
	p(1) = 1/0 p(1) = 0 p(3) = 1/0
	uniform integer from 1 to b
13	Bernoulli: unfair coin.

14.1	pX(k): probabili ty that the random var X has value k
	In this particular case, X is a random variable
	following a geometric distribution with parameter p.
	The random variable X in 14.1 is unrelated to X in 12.3 for example
	Geometric dist example. Fair coin $p=1/2$ a defined = 1-p
	$pX(k) q^{(k-1)} p = 2^{(-k)}$
	$p_X(1) = 1/2$ P(2) = 1/4
	p(10) = 1/1024
	tosses until the 1st head.
	another geometric dist example. black pixels on page Y = random var for number of pixels along line until
	1st black pixel. App: run-length encoding for fax.
	$p=.01$ $Y(k) = q^{2}(k-1) = -99^{2}(k-1) * 01$
	$T(K) = Q(K^{-1}) D = .93(K^{-1}) .01$
	$p_Y(1) = .01$ $p_Y(2) = .99 * .01 = .0099$
	In these examples, geom probs decrease towards 0.

	3
15	binomial r.v.
	ex. toss coin twice $n=2$ $p=1/2$
	here X is r.v. of # heads from 2 tosses.
	p_X(1) = (2 choose 1) p^1 q^1 = 1/2
16	as n increases graphs becomes similar a 'normal' distribution.
Ca	uchy ()
	spin a spinner. r.v. is where the projected pointer hits
	x-axis.
	$p(x) = c / (1+x^2)$ (I think)
	integral is 1. always nonnegative.
	however (🗙 🗸 👌
	C) ()) () () () _
	diverges
	Cauchy dist does not have a mean or any other moment.
Ĺ	
t	ails don't converge to 0 quickly enough.
	Physical meaning of not having a mean. This is getting ahead a little but it's important.
	Think about tossing coin n times and recording number of heads. About n/2 but fluctuates every time you toss n coins.

	Toss coin 10 times, and do this several times.
	# heads fluctuates around 5. Next, toss coin 100 times and repeat.
	# heads fluctuates around 50. But, as a fraction of 100,
	these observations are more tightly clustered around 50.
	The larger n gets, the smaller the percentage fluctuation
	from the mean is.
	NOT TRUE for Cauchy.
	Perhaps not true for stock market.
	Tails of distribution are too fat.
	St Petersburg paradox: bet until you win,
	doubling each time. When you win, that win
	pays all previous losses and still gives a profit.
18	Mean of Bernoulli, for $p=1/2$ p(0) = p(1) = 1/2 mean = $1/2*0 + 1/2*1 = 1/2$
	p(0) = p(1) = 1/2 mean = 1/2 0 1 1/2 1 = 1/2
	Mean of uniform [1.6]:
	p(1) = p(2) = 1/6
	$mean = 1/0^{+}1 + 1/0^{+}2 \dots = 3.5$
10	
19	Mean of binomial for $n=3$, $p = .1$
	(3 choose 0) .9^3 *0
	$(3 \text{ choose } 1) \cdot 9^2 \cdot 1 \cdot 1 +$
	$+ (3 \text{ choose } 3) .1^3 3$
	= 0 + .243 + .054 + .003 = .3 (makes sense)
	general rule for binomial. mean = np
25	
25	do Mon.

4