$$
\begin{gathered}
P(A)=015 / 81 \\
P(B \mid A)=.9=1-.1 \\
P(A \cap B)=P(B \mid A) P(A) \\
.9 \quad .91=i .089 \\
P\left(A^{\prime} \cap B\right)=P(B \mid A) P\left(A^{\prime}\right) \\
=.1 .09 .99
\end{gathered}
$$

$$
9.1
$$

$$
\begin{aligned}
& {\left[\begin{array}{c}
P(B)=P\left(B \mid A^{1}\right) P\left(A_{1} 1\right) \\
1 \\
\frac{1}{99}(B \mid A) P(A) \\
9.91
\end{array}\right\}^{9}} \\
& =.0997 .009 \\
& \text { c. V } 8 \\
& P \mid A \cap B)=P(A \mid B) P(B) \\
& P(B)=P(A \cap B)+P\left(A^{\prime} \cap B\right) \\
& P\left(A(B)=\frac{P(A \cap B)}{P(B)}=\frac{.09}{.108}\right.
\end{aligned}
$$

$$
\begin{aligned}
& A_{1}, A_{2} \cup A_{3}=S \quad 3 \\
& P\left(A_{1}\right)=2 \quad P\left(B A_{1}\right)=05 \\
& P\left(A_{2}\right)=3 \quad P\left(B A A_{2}=03\right. \\
& P\left(A_{3}=5 \quad P\left(B\left(A_{3}\right)=0\right)\right.
\end{aligned}
$$

cant $P\left(A_{3} \mid B\right)$?
$P(B)=P\left(B\left(A_{1}\right) P\left(a_{1}+P\left(B A_{1}\right) P\left(a_{3}\right)+P\left(B A_{3}\right) P\left(a_{3}\right)\right.\right.$
$\mathrm{P}(\mathrm{B})=$
$P(B) \quad=.05 \times .2+.03 \times .3+.01 \times$
$P($ Band $A 3)=B(B \mid A 3) P(A 3)=.005$
$P(A 3 \mid B)=P(B$ and $A 3) / P(B)=.005 / .024=.2$ approx
independence of 3 events
def: indep iff $P(A$ and B and $C)=P(A) P(B) P(C)$
book ex 2.33, 2.32 whatever
A and B and C Prob $=0$
$P(A) P(B) P(C)=1 / 8!=0$
big: A and B indep. A and C indep. B and C indep.
A, B and C not indep.
$P(A$ and $B)=P(A \mid B) P(B)=P(A) P(B)$ if indep
so indep $->P(A \mid B)=P(A)$
triple indep: does this imply pairwise indep?
event: is this pixel black? $P(B)=.01$.
$\mathrm{P}\left(\mathrm{B}^{\prime}\right)=.99$
look at 2 pixels: P (exactly 0 black) $=(2$ choose 0$) .01^{\wedge} 0.99^{\wedge} 2=.98$
$\mathrm{P}($ exactly 1 black $)=(2$ choose 1$) .01 .99=.02$
$\mathrm{P}($ exactly 2 black $)=(2$ choose 2$) .01 \wedge 2.99^{\wedge} 0=.0001$
$.98+.02+.0001=1(2$ signif digits)
.)Geometric dist: repeat bernoulli trial until success.
Take a fair coin.
$\mathrm{P}(\mathrm{H}$ on 1st toss $)=\mathrm{p}=.5$
P (1st happens on 2 nd toss) $=(1-\mathrm{p}) \mathrm{p}$
P (1st head happens on N -th toss $)=(1-\mathrm{p})^{\wedge}(\mathrm{N}-1) \mathrm{p}$
P (it will take at least N tosses)
$=$ sum of i from N to infinity of

That has a simple formula.

