$$
\begin{aligned}
& \frac{211 / 1 \delta \mathrm{pl}}{1000(3000) 2000} \\
& P(A \cap B)=P(A \mid B) P(B) \\
& 3 / 7 \quad 3 / 5 \quad 5 / 7 \\
& =P(B \mid A) P(A) \\
& 3 / 4 \quad 417 \\
& \begin{array}{l}
2.26 \text { erroroneous comm } \\
\text { xmit } 0 \text { wp p error wp e }
\end{array} \\
& \underset{\rightarrow-p}{\text { P }} \underset{\sim}{\text { ies }} \rightarrow 0 \\
& p(\overrightarrow{n c} \leq 1)=p e+(1-p)(i-e)
\end{aligned}
$$

$$
\begin{aligned}
& p(R 1)=p e+(1-p)(1-e) \\
& p(R|\mid T O=e \\
& p(R 1 \mid T i)=\text { re } \\
& p(T 0)=p \quad p(T 1)=1-p \\
& p(R 1)=p\left(T_{0}\right) p\left(R, \mid T_{0}\right)=p e \\
& +P(T)) P(R \mid T T)=(1-p)(I e) \\
& P(R \mid \cap T i)=P(T)) P\left(P_{1} \mid T i\right)= \\
& =P\left(R_{1}\right) P\left(T \mid R_{1}\right) \\
& =[p e+(1-p)(1-q)] P\left(T i \mid R_{1}\right) \\
& P\left(T\left|\mid R_{1}\right)=\frac{p(R \cap \Gamma i)}{P}\right.
\end{aligned}
$$

$$
\begin{aligned}
& P(T 0)=p \quad P(T))=1-p \\
& P(R|\mid T \delta)=e=p(R \circ \mid T I) \\
& P(T O \cap R)=P e \\
& P\left(T O \mid R_{1}\right) * P\left(R_{1}\right)=P\left(T O_{1} R_{1}\right) \\
& p(T \mid R 1)=\frac{\left.p^{p e r}(-p) /-e\right)}{p e}
\end{aligned}
$$

transmission:
A: send 0
B: rec 0
givens: $P(A)=.5$
$P(B \mid A)=.9$
$P(A$ and $B)=P(A) P(B \mid A)=.5 .9=.45$ $=P(A \mid B) P(B)$ need $P(B)$

$$
P(B)=P(A \text { and } B)+P\left(A^{\prime} \text { and } B\right)
$$

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{~A}^{\prime} \text { and } \mathrm{B}\right)=\mathrm{P}\left(\mathrm{~B} \mid \mathrm{A}^{\prime}\right) \mathrm{P}\left(\mathrm{~A}^{\prime}\right)=.1 .5=.05 \\
& \mathrm{P}(\mathrm{~B})=.45+.05=.5 \\
& \mathrm{P}(\mathrm{~A} \mid \mathrm{B})=.45 / .5=.9
\end{aligned}
$$

$$
\begin{gathered}
P(R O \mid \leqslant 0)=\frac{P(R O n s)}{P(s \theta)}
\end{gathered}
$$

$$
\text { P(solRo) }: P^{(1 / \operatorname{congh})}=9
$$

$$
\begin{aligned}
& p(50)=.9 \\
& P\left(S 0^{\prime}\right)=1 \\
& R(R O \mid S 0)=.9 \\
& r(R 1(s i)=. q
\end{aligned}
$$

$$
\begin{aligned}
& P\left(R \mid \cap S_{1}\right)=\left(f(R|k|) P\left(S_{1}\right)=.09\right. \\
& P(S O \mid R O)=P(80 \cap R O) / P\left(R_{0}\right) \\
& =.81 / 82 \approx .99 \\
& f\left(S\left|\mid R_{1}\right)=p\left(S \mid n R_{1}\right) / p\left(R_{1}\right)=0.09 / 1.12 \frac{1}{2}\right.
\end{aligned}
$$

medical test
A: horrible disease
B: test was positive
$\mathrm{P}(\mathrm{A})=0.001$
$P(B \mid A)=.9$
$\mathrm{P}\left(\mathrm{B} \mid \mathrm{A}^{\prime}\right)=.01$
want $P(A \mid B)$?
$P(B)=.001 * .9+.999 * .01=.01$
$P(A$ and $B)=P(B \mid A) P(A)=.0009$
$=P(A \mid B) P(B)$
$\mathrm{P}(\mathrm{A} \mid \mathrm{B})=.0009 / .01=.001 / .01=.1$
here B, wiki B0
here B^{\prime} wiki B 1
$B 0$ union $B 1=S$ (universe, i.e. every possible outcome) $P(S)=1$
$P(B O \mid A)=P(B 0$ and $A) / P(A)$
$.9=P(B 0$ and $A) / .001$
$P(B 0$ and $A)=.0009=.001$

