$$
\begin{aligned}
& \text { Y STUDENTS } \\
& \text { A BC D } \\
& \text { DIVIDE ITO } 2
\end{aligned}
$$

$$
\text { TEAMS OF } 2 \text {. }
$$

UNDEFUD :DU

HAVE NAME 2 ? TEAMS

Q: does the order of the players in each team matter? If doesn't matter: 6 possibilities.
If it does: $4 \times 3 \times 2=24$

$$
\begin{aligned}
& A B, C D \\
& A C, B D \\
& A D, B C \text { For dsT } \\
& \text { BCD. } 3 \text { tor } 2^{\text {in }} \\
& B D, A C \text { PICKS EACLI } \\
& C D, A B \text { TEAM TWiCE. }
\end{aligned}
$$

how many 5 -card hands?
1st card: 52
2nd: 51
5 cards: $52 \times 51 \times 50 \times 49 \times 48=52!/ 47!$
but this ignored that I don't care about the order how many ways could I have picked each hand? 5! ways \# hands: 52!/47!/5!
easy example: 6 card deck. pick a hand of 3 cards.
card names: ab c def
6 choices for 1st card
then 5 choices for and
then 4 for the 3rd card. gives $6 \times 5 \times 4=6!/ 3!=120$
$6!=6 \times 5 \times 4 \times 3 \times 2 \times 1$
$3!=3 \times 2 \times 1$
$6!/ 3!=6 \times 5 \times 4$

But the above called these 2 hands different: abc and baa. If I don't care about the order I picked the cards in my card, then I have to divide by the number of ways I could have picked each hand. That's 6.

These hands are the same: abc cb pac bsa cab cha 6
That's 120/6 = 20 hands.
abc abd abe bf ccd ace cf ode adf def
bcd be bcf bde pdf bef
code cdf ref
def
That's 20.

If the order does matter. To pick k cards from a deck of n.
\# hands is $n(n-1)(n-2) \ldots .(n-k+1)=n!/(n-k)!$
This assumes that the cards are all different.

If order does not matter, divide that by k !
Answer is $n!/(n-k)!/ k!=n$ choose $k=(\sim)$
2e
How many ways to pick 5 widgets?

How many ways to pick 5 good widgets?

Probability of all 5 widgets good:

$$
\frac{90!95!5!}{85!5!100!}=
$$

$4 / c$
sample w replacement order matters
urn has 3 colors: ra b pick 5 balls w replacement. rrrr ggggg rrrrg rrgrr rgrbr 3 colors for 1 st $\times 3$ colors for 2 nd $\times 3$ colors for 3 rd... $3 \times 3 \times 3 \times 3 \times 3=3^{\wedge} 5=243$.

Permutations: select k from n. Order matters: $n!/(n-k)$!

Pick 4 teams of 10 players from 40 players. How many teams?
pick 1st team: $40 \times 39 \times 38 \ldots \times 31 / 10!=40!/ 30!/ 10$!
2nd team: $30 \times 29 \ldots \times 21 / 10!=30!/ 20!/ 10$!
3rd team: 20!/10!/10!
4th team: 1
result: 40 ! 30 ! 20 ! / (30! 20! 10! 10! 10! 10!) agrees order within each team does not matter
here, order between teams does.
sometimes it does not.

