CS 193G

Lecture 5: Performance Considerations

But First!

® Always measure where your time is
going!

® cvenif you think you know where it is going
® siart coarse, go fine-grained as need be
® Keep in mind Amdahl’s Law when

optimizing any part of your code

® Don’t continue to optimize once a part is only a
small fraction of overall execution time

Performance Considerations

4 Memory Coalescing

® Shared Memory Bank Conflicts
® Control-Flow Divergence

4 Occupancy

® Kernel Launch Overheads

MEMORY COALESCING

Memory Coalescing

® Off-chip memory Is accessed In

chunks

®cvenif you read only a single word

® s you don’t use whole chunk, bandwidth is
wasted

® Chunks are aligned to multiples of 32/64/128
bytes

® Unaligned accesses will cost more

Threads 0-15 access 4-byte words at
addresses 116-176

® Thread 0 is lowest active, accesses address
116

® 128-byte segment: 0-127

tOtl t2t3 t15

122
NN N [N NN (N N N

0 32 64 96 128 160 192 224 256 288

Threads 0-15 access 4-byte words at
addresses 116-176

® Thread 0 is lowest active, accesses address
116

® 128-byte segment: 0-127 (reduce to 64B)

tOtl t2t3 t15

122
NN N [N NN (N N N

0 32 64 96 128 160 192 224 256 288

\ J
Y

64B segment

Threads 0-15 access 4-byte words at
addresses 116-176

® Thread 0 is lowest active, accesses address
116

® 128-byte segment: 0-127 (reduce to 32B)

tOtl t2t3 t15

122
AN IS I N N N NN

0 32 64 96 128 160 192 224 256 288

H_/

32B transaction

Threads 0-15 access 4-byte words at
addresses 116-176

® Thread 3 is lowest active, accesses address
128

® 128-byte segment: 128-255

tOtl t2t3 t15
AN IS I N N N NN

0 32 64 96 128 160 192 224 256 288

\ J
Y

128B segment

Threads 0-15 access 4-byte words at
addresses 116-176

® Thread 3 is lowest active, accesses address
128

® 128-byte segment: 128-255 (reduce to 64B)

tOtl t2t3 t15
AN I N v

0 32 64 96 128 160 192 224 256 288

\ J
Y

04B transaction

Consider the stride of your accesses

__global wvoid foo(int* input,
float3* input2)

int 1 = blockDim.x * blockIdx.x
+ threadIdx.x;
// Stride 1
int a = input[i];
// Stride 2, half the bandwidth is wasted
int b = input[2*i];
// Stride 3, 2/3 of the bandwidth wasted
float ¢ = input2[i] .x;

Example: Array of Structures (AoS)

struct record
{
int key;
int value;

int flag;
};

record *d_records;

cudaMalloc ((void**) &d records, ...);

Example: Structure of Arrays (SoA)
struct SoA
{
int * keys;
int * wvalues;
int * flags;
};

SoA d SoA data;

cudaMalloc((void**) &d SoA data.keys, ...);
cudaMalloc((void**) &d SoA data.values, ...);
cudaMalloc((void**) &d SoA data.flags, ...);

Example: SOA vs. AoS

__global void bar(record *AoS data,
SoA SoA data)

int 1 = blockDim.x * blockIdx.x
+ threadIdx.x;
// AoS wastes bandwidth
int key = AoS data[i] .key;
// SoA efficient use of bandwidth
int key better = SoA data.keys[i];

Memory Coalescing

® Structure of array Is often better than
array of structures

® Very clear win on regular, stride 1 access
patterns

® Unpredictable or irregular access patterns are
case-by-case

SHARED MEMORY BANK
CONFLICTS

Shared Memory

® Shared memory Is banked
® Only matters for threads within a warp
® rull performance with some restrictions
® Threads can each access different banks
® Or can all access the same value

® Consecutive words are in different banks

® If two or more threads access the same
bank but different value, get bank
conflicts

Bank Addressing Examples

® No Bank Conflicts

® No Bank Conflicts

Bank Addressing Examples

® 2-way Bank Conflicts

® 8-way Bank Conflicts

Trick to Assess Impact On
Performance

® Change all SMEM reads to the same value
® All broadcasts = no conflicts

® Will show how much performance could be
Improved by eliminating bank conflicts

® The same doesn’t work for SMEM writes

® So, replace SMEM array indices with
threadIdx.x

® Can also be done to the reads

Additional “memories”

® textureand constant

Read-only
Data resides in global memory

Different read path:
® includes specialized caches

Constant Memory

® Data stored in global memory, read through
a constant-cache path
® constant qualifier in declarations

®can only be read by GPU kernels
® Limited to 64KB
® 10 be used when all threads in a warp read
the same address
® Serializes otherwise
4 Throughput:

® 37 pits per warp per clock per multiprocessor

CONTROL FLOW
DIVERGENCE

Control Flow

® Instructions are issued per 32 threads

(warp)
® Divergent branches:
® Threads within a single warp take different paths
® 1f-else, ...

® pifferent execution paths within a warp are
serialized

® Different warps can execute different code
with no impact on performance

Control Flow
® Avoid diverging within a warp
® Example with divergence:
if (threadIdx.x > 2) {...}
else {...}
Branch granularity < warp size
® Example without divergence:
if (threadIdx.x / WARP SIZE > 2)

{...}

else {...}

Branch granularity is a whole multiple of
warp size

Example: Divergent Iteration

__global void per thread sum(int *indices,
float *data,

float *sums)

// number of loop iterations is data
// dependent
for(int j=indices[i];]j<indices[i+l1l]; j++)
{
sum += data[]j]:
}

sums[i] = sum;

Iteration Divergence

®A single thread can drag a whole warp with
it for along time

® Know your data patterns

® f datais unpredictable, try to flatten peaks
by letting threads work on multiple data
items

OCCUPANCY

Reminder: Thread Scheduling

® swm Implements zero-overhead warp
scheduling
® At any time, only one of the warps is executed by
SM *
® Warps whose next instruction has its inputs
ready for consumption are eligible for execution

® Eligible Warps are selected for execution on a
prioritized scheduling policy

® All threads in a warp execute the same
Instruction when selected

TB1, W1 stall

—T1B2, W1 stal—}———TB3, W2 stall——— |

Instruction:

Thread Scheduling

® what happens if all warps are stalled?
® No instruction issued > performance lost

® Most common reason for stalling?
® Waiting on global memory

®f your code reads global memory every
couple of instructions

® vou should try to maximize occupancy

What determines occupancy?

® Register usage per thread & shared memory
per thread block

Resource Limits (1)

Registers Shared Memory Registers Shared Memory

B 2
TB1
B 2 8
TBO
TBO B 1
TBO
TBO

® pool of registers and shared memory per SM

® cach thread block grabs registers & shared
memory

® |t one or the other is fully utilized -> no more
thread blocks

Resource Limits (2)

® can only have 8 thread blocks per SM

® they’re too small, can’t fill up the SM

® Need 128 threads / TB (gt200), 192 thread/ TB
(gf100)

® Higher occupancy has diminishing returns
for hiding latency

Hiding Latency with more threads

Throughput, 32-bit words

256 384 514 640 768

Threads Per Multiprocessor

How do you know what you’re
using?

® Use nvee -Xptxas -vto get register and
shared memory usage

® Plug those numbers into CUDA Occupancy
Calculator

H9-
Home

& Cut
=3 Copy
Paste
- J Format Painter

Clipboard

Cia
ol

Insert Page Layout Formulas Data

Arial
Font

Security Warning Macros have been disabled. Options...

MyRegCount fe | 25
A

1.) Select Compute Capability (click):

2.) Enter your resource usage:

Review

View
| &~ | | SFWrap Text
ﬂ Merge & Center ~

Alignment

sm - Microsoft Excel

k5

Conditional Format Meutra
Formatting = as Table =

=
+om

== ==

lZI Insert Delete Format

General Marmal
LR]

MNumber

E F G H | J K L M N 0
The other data points represent the range of possible block sizes, register counts, and shared memory allocation.

-/ Clear =

= ¥ AutoSum ~ r‘\ 4
ﬂ—l @] Fill - 2 }}

Sort & Find &
Filter~ Select -
Editing

Threads Per Block

Registers Per Thread

Shared Memaory Per Block (bytes)

(Don't edit anything below this line)

3.) GPU Occupancy Data is displayed here and in the graphs:

Active Threads per Multiprocessor

7 Active Warps per Multiprocessor
Active Thread Blocks per Multiprocessor
Occupancy of each Multiprocessor

512
16
4

Physical Limits for GPU Compute Capability:

Multiprocessor
Warp Occupancy

Threads per Warp
Warps per Multiprocessor
Threads per Multiprocessor
Thread Blocks per Multiprocessor
7 Total # of 32-bit registers per Multiprocessor
Register allocation unit size
Register allocation granularity
Shared Memory per Multiprocessor (bytes)
Shared Memory Allocation unit size
Warp allocation granularity (for register allocation)

Varying Block Size Varying Register Count

N
=]

[n
ra

My Block Size My Register
128

Multiprocessor

Warp Occupancy
n
®

=1

208
Threads Per Block

Registers Per Thread

Allocation Per Thread Block

Warps
Registers
Shared Memory

These data are used in computing the occupancy data in blue

Maximum Thread Blocks Per Multiprocessor

Limited by Max Warps / Blocks per Multiprocessor
Limited by Registers per Multiprocessor
Limited by Shared Memory per Multiprocessor

Multiprocessor
Warp Occupancy

Thread Block Limit Per Multiprocessor highlighted

CUDA Qccupancy Calculator

47 Version:

Copyright and License

M 4 » M| Calculator “Help - GPU Data Copyright & License

Varying Shared Memory Usage

My Shared
Memaory 640

&) [N
5] @ 2
;] @ =

5]
=
E
) =
=]
Ik

[== = T S)
emory Per Block

ared

Ready

EEERTTN e

MySharedMemory - Jfx | =5*MyThreadCount

CUDA GPU' Occupancy Calcul

1
?
3
4 Just follow steps 1, 2, and 3 below! (or click here for help)
T
G

1.) Select Compute Capability (click): 1.3 (t

.
o 2.) Enter your resource usage:
Y Threads Per Block 128 (-
10 Registers Per Thread 25
11 Shared Memory Per Block (bytes) 6401
12

13 (Don't edit anything below this line)

14

15 3.) GPU Occupancy Data is displayed here and in the graphs:

M 4 » M| Calculator Help .~ GPU Data Copyright [i |

Ready | EEH [0 ET] 0086t =) v

el e sl v S

A B
14
15 3.) GPU Occupancy Data is displayed here and in the graphs:
16 Active Threads per Multiprocessor 212
17 Active Warps per Multiprocessor 16
16 Active Thread Blocks per Multiprocessor 4
19 Occupancy of each Multiprocessor 0%
20
21
22 Physical Limits for GPU Compute Capability: 1.3
23 Threads per Warp 32
24 Warps per Multiprocessor 32
25 Threads per Multiprocessor 1024
26 Thread Blocks per Multiprocessor g
27 Total # of 32-bit registers per Multiprocessor 16384
24 Hegister allocation unit size 512
29 Hegister allocation granularity block
30 Shared Memory per Multiprocessor (bytes) 16364
31 Shared Memory Allocation unit size 512
32 Warp allocation granularity (for register allocation) 2
33
34 Allocation Per Thread Block
35 Warps 4
36 Hegisters 3584
37 Shared Memory 1024

36 These data are used in computing the occupancy data in blue

39

40 Maximum Thread Blocks Per Multiprocessor Blocks
41 [Limited by Max Warps / Blocks per Multiprocessor

42 Limited by Registers per Multiprocessor

43 Limited by Shared Memory per Multiprocessor

44 Thread Block Limit Per Multiprocessor highlighted RED
4 4 » M| Calculator - Help - GPU Data Cof .| 3
Ready /O] [|y200%u(=) (1] ()

L | - r 3 L I ol M = 1l I L L s m B
The other data points represent the range of possible block sizes, register counts, and shared memory allocation.

5
5
7 Varying Block Size Varying Register Count
8
9

10 48 -) 48 1

.
]

13 40

£adt
[

32

24

My Block Size My Register
128

Multiprocessor
Warp Occupancy

Multiprocessor
Warp Occupancy
=]

e

P2
=
—_
[=3]
.
L
.
—
on

2:' l:l T T T T T T T 0 LRI B N B N N N H S B I N N NN B B AN NN N N N BN BN N B N B B B |
2'3 = = RO D D) e e e O OO OO e 7 0D 0D 00 D) (D = = R R e

1 Bl:l 1‘1‘1‘ 2':'8 2?'2 336 _1'00 _1'64' DhcjI"-JJJCIJ‘-"-CJI‘-JJ.-D-I‘—'lnCJFJJ;g::E;FJJJD#CJFJJ.-CICID—"-—"F-JFJI‘-J
2? O e DR OO e 00

28 Threads Per Block Registers Per Thread

29
30
31
32
33
34
35
3'3 43 T
37
38
39
40
41
42
43
44 5
45
45 0 -
47 =
48
49
50 |
M 4 » M| Calculator . Help .~ GPU Data Copyright & License ' 1 b

(53]

Varying Shared Memory Usage

My Shared
Memory 640

Multiprocessor
Warp Occupancy
~a
=y

[S N o R
| S R e
oh

1
o o
£ @ O frag
[et I]

=

Ik

ar0z

w0
=]

Fr 1O
TELE
oFz0L
29T
QEER |
9@ poco)
TEFRL
0z.L06
20.TE
9 18kE
i
2008
FOLLE
TSGR

(=i R S

ared Memory Per Block

How to influence how many registers
you use

4 Pass option -maxrregcount=Xto nvcc

® This isn’t magic, won’t get occupancy for
free

® Use this very carefully when you are right
on the edge

KERNEL LAUNCH OVERHEAD

Kernel Launch Overhead

® Kernel launches aren’t free
® A null kernel launch will take non-trivial time

® Actual number changes with HW generations
and driver software, so | can’t give you one
number

® Independent kernel launches are cheaper
than dependent kernel launches
® Dependent launch: Some readback to the cpu

®f you are launching lots of small grids you
will lose substantial performance due to this
effect

Kernel Launch Overheads

®f you are reading back data to the cpu for
control decisions, consider doing it on the
GPU

® Even though the GPU is slow at serial
tasks, can do surprising amounts of work
before you used up kernel launch overhead

Performance Considerations

® Measure, measure, then measure some
more!

® once you identify bottlenecks, apply
judicious tuning
® Wwhat is most Important depends on your
program

® vou’'ll often have a series of bottlenecks, where
each optimization gives a smaller boost than
expected

Questions?

Backup

Shared Memory

® Uses:
Inter-thread communication within a block
Cache datato reduce global memory accesses
Use it to avoid non-coalesced access

® O&ganization:

banks, wide banks (Tesla)
banks, wide banks (Fermi)
Successive 32-bit words belong to different

banks
® Performance:

If n threads (out of 16) access the
same bank, n accesses are executed serially

®
: smem accesses are per 16-threads (half-warp)
® threads access the same word in

one fetch

Example: Averaging Peaks

~__global void per thread sum(...)

{

while (!'done)
{
for(int j=indices|[1i];
j<min(indices[i+l],indices[i]+MAX ITER) ;
++)
{...}

