
CS 193G

Lecture 5: Performance Considerations

But First!

Always measure where your time is

going!
Even if you think you know where it is going

Start coarse, go fine-grained as need be

Keep in mind Amdahl’s Law when

optimizing any part of your code
Don’t continue to optimize once a part is only a

small fraction of overall execution time

Performance Considerations

Memory Coalescing

Shared Memory Bank Conflicts

Control-Flow Divergence

Occupancy

Kernel Launch Overheads

MEMORY COALESCING

Memory Coalescing

Off-chip memory is accessed in

chunks
Even if you read only a single word

If you don’t use whole chunk, bandwidth is

wasted

Chunks are aligned to multiples of 32/64/128

bytes

Unaligned accesses will cost more

Threads 0-15 access 4-byte words at

addresses 116-176

Thread 0 is lowest active, accesses address
116

128-byte segment: 0-127

96 192128

128B segment

160 224

t1 t2

288256

...
t0 t15

0 32 64

t3

Threads 0-15 access 4-byte words at

addresses 116-176

Thread 0 is lowest active, accesses address
116

128-byte segment: 0-127 (reduce to 64B)

96 192128

64B segment

160 224

t1 t2

288256

...
t0 t15

0 32 64

t3

Threads 0-15 access 4-byte words at

addresses 116-176

Thread 0 is lowest active, accesses address
116

128-byte segment: 0-127 (reduce to 32B)

96 192128

32B transaction

160 224

t1 t3

288256

...
t0 t15

0 32 64

t2

Threads 0-15 access 4-byte words at

addresses 116-176

Thread 3 is lowest active, accesses address
128

128-byte segment: 128-255

96 192128

128B segment

160 224

t1 t2

288256

...
t0 t15

0 32 64

t3

Threads 0-15 access 4-byte words at

addresses 116-176

Thread 3 is lowest active, accesses address
128

128-byte segment: 128-255 (reduce to 64B)

96 192128

64B transaction

160 224

t1 t2

288256

...
t0 t15

0 32 64

t3

Consider the stride of your accesses

__global__ void foo(int* input,

float3* input2)

{

int i = blockDim.x * blockIdx.x

+ threadIdx.x;

// Stride 1

int a = input[i];

// Stride 2, half the bandwidth is wasted

int b = input[2*i];

// Stride 3, 2/3 of the bandwidth wasted

float c = input2[i].x;

}

Example: Array of Structures (AoS)

struct record

{

int key;

int value;

int flag;

};

record *d_records;

cudaMalloc((void**)&d_records, ...);

Example: Structure of Arrays (SoA)

struct SoA

{

int * keys;

int * values;

int * flags;

};

SoA d_SoA_data;

cudaMalloc((void**)&d_SoA_data.keys, ...);

cudaMalloc((void**)&d_SoA_data.values, ...);

cudaMalloc((void**)&d_SoA_data.flags, ...);

Example: SoA vs. AoS

__global__ void bar(record *AoS_data,

SoA SoA_data)

{

int i = blockDim.x * blockIdx.x

+ threadIdx.x;

// AoS wastes bandwidth

int key = AoS_data[i].key;

// SoA efficient use of bandwidth

int key_better = SoA_data.keys[i];

}

Memory Coalescing

Structure of array is often better than
array of structures

Very clear win on regular, stride 1 access
patterns

Unpredictable or irregular access patterns are
case-by-case

SHARED MEMORY BANK

CONFLICTS

Shared Memory

Shared memory is banked
Only matters for threads within a warp

Full performance with some restrictions

Threads can each access different banks

Or can all access the same value

Consecutive words are in different banks

If two or more threads access the same
bank but different value, get bank
conflicts

Bank Addressing Examples

No Bank Conflicts No Bank Conflicts

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank Addressing Examples

2-way Bank Conflicts 8-way Bank Conflicts

Thread 11

Thread 10

Thread 9
Thread 8

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2

Bank 1
Bank 0

x8

x8

Trick to Assess Impact On

Performance

Change all SMEM reads to the same value

All broadcasts = no conflicts

Will show how much performance could be

improved by eliminating bank conflicts

The same doesn’t work for SMEM writes

So, replace SMEM array indices with
threadIdx.x

Can also be done to the reads

Additional “memories”

texture and __constant__

Read-only

Data resides in global memory

Different read path:

includes specialized caches

Constant Memory

Data stored in global memory, read through

a constant-cache path

__constant__ qualifier in declarations

Can only be read by GPU kernels

Limited to 64KB

To be used when all threads in a warp read

the same address

Serializes otherwise

Throughput:

32 bits per warp per clock per multiprocessor

CONTROL FLOW

DIVERGENCE

Control Flow

Instructions are issued per 32 threads

(warp)

Divergent branches:

Threads within a single warp take different paths

if-else, ...

Different execution paths within a warp are

serialized

Different warps can execute different code

with no impact on performance

Control Flow

Avoid diverging within a warp

Example with divergence:

if (threadIdx.x > 2) {...}

else {...}

Branch granularity < warp size

Example without divergence:

if (threadIdx.x / WARP_SIZE > 2)

{...}

else {...}

Branch granularity is a whole multiple of

warp size

Example: Divergent Iteration

__global__ void per_thread_sum(int *indices,

float *data,

float *sums)

{

...

// number of loop iterations is data

// dependent

for(int j=indices[i];j<indices[i+1]; j++)

{

sum += data[j];

}

sums[i] = sum;

}

Iteration Divergence

A single thread can drag a whole warp with

it for a long time

Know your data patterns

If data is unpredictable, try to flatten peaks

by letting threads work on multiple data

items

OCCUPANCY

29

Reminder: Thread Scheduling

SM implements zero-overhead warp

scheduling
At any time, only one of the warps is executed by

SM *

Warps whose next instruction has its inputs

ready for consumption are eligible for execution

Eligible Warps are selected for execution on a

prioritized scheduling policy

All threads in a warp execute the same

instruction when selected

TB1

W1

TB = Thread Block, W = Warp

TB2

W1

TB3

W1

TB2

W1

TB1

W1

TB3

W2

TB1

W2

TB1

W3

TB3

W2

Time

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4

Thread Scheduling

What happens if all warps are stalled?

No instruction issued  performance lost

Most common reason for stalling?

Waiting on global memory

If your code reads global memory every

couple of instructions

You should try to maximize occupancy

What determines occupancy?

Register usage per thread & shared memory

per thread block

Resource Limits (1)

TB 0

Registers

Pool of registers and shared memory per SM
Each thread block grabs registers & shared

memory

If one or the other is fully utilized -> no more

thread blocks

Shared Memory

TB 1

TB 2

TB 0

TB 1

TB 2

TB 0

Registers

TB 1

TB 0

TB 1

Shared Memory

Resource Limits (2)

Can only have 8 thread blocks per SM
If they’re too small, can’t fill up the SM

Need 128 threads / TB (gt200), 192 thread/ TB

(gf100)

Higher occupancy has diminishing returns

for hiding latency

Hiding Latency with more threads

How do you know what you’re

using?

Use nvcc -Xptxas –v to get register and

shared memory usage

Plug those numbers into CUDA Occupancy

Calculator

How to influence how many registers

you use

Pass option –maxrregcount=X to nvcc

This isn’t magic, won’t get occupancy for

free

Use this very carefully when you are right

on the edge

KERNEL LAUNCH OVERHEAD

Kernel Launch Overhead

Kernel launches aren’t free
A null kernel launch will take non-trivial time

Actual number changes with HW generations

and driver software, so I can’t give you one

number

Independent kernel launches are cheaper

than dependent kernel launches
Dependent launch: Some readback to the cpu

If you are launching lots of small grids you

will lose substantial performance due to this

effect

Kernel Launch Overheads

If you are reading back data to the cpu for

control decisions, consider doing it on the

GPU

Even though the GPU is slow at serial

tasks, can do surprising amounts of work

before you used up kernel launch overhead

Performance Considerations

Measure, measure, then measure some

more!

Once you identify bottlenecks, apply

judicious tuning

What is most important depends on your

program

You’ll often have a series of bottlenecks, where

each optimization gives a smaller boost than

expected

Questions?

Backup

Shared Memory

Uses:
Inter-thread communication within a block
Cache data to reduce global memory accesses
Use it to avoid non-coalesced access

Organization:
16 banks, 32-bit wide banks (Tesla)
32 banks, 32-bit wide banks (Fermi)
Successive 32-bit words belong to different
banks

Performance:
32 bits per bank per 2 clocks per
multiprocessor
smem accesses are per 16-threads (half-warp)
serialization: if n threads (out of 16) access the
same bank, n accesses are executed serially
broadcast: n threads access the same word in
one fetch

Example: Averaging Peaks

__global__ void per_thread_sum(...)

{

while(!done)

{

for(int j=indices[i];

j<min(indices[i+1],indices[i]+MAX_ITER);

j++)

{...}

}

}

