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Lecture 5: Performance Considerations



But First!

Always measure where your time is 

going!
Even if you think you know where it is going

Start coarse, go fine-grained as need be 

Keep in mind Amdahl’s Law when 

optimizing any part of your code
Don’t continue to optimize once a part is only a 

small fraction of overall execution time



Performance Considerations

Memory Coalescing

Shared Memory Bank Conflicts

Control-Flow Divergence

Occupancy

Kernel Launch Overheads



MEMORY COALESCING



Memory Coalescing

Off-chip memory is accessed in 

chunks
Even if you read only a single word

If you don’t use whole chunk, bandwidth is 

wasted 

Chunks are aligned to multiples of 32/64/128 

bytes

Unaligned accesses will cost more



Threads 0-15 access 4-byte words at 

addresses 116-176

Thread 0 is lowest active, accesses address 
116

128-byte segment: 0-127
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Threads 0-15 access 4-byte words at 

addresses 116-176

Thread 0 is lowest active, accesses address 
116

128-byte segment: 0-127 (reduce to 64B)

96 192128

64B segment

160 224
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Threads 0-15 access 4-byte words at 

addresses 116-176

Thread 0 is lowest active, accesses address 
116

128-byte segment: 0-127 (reduce to 32B)

96 192128

32B transaction
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Threads 0-15 access 4-byte words at 

addresses 116-176

Thread 3 is lowest active, accesses address 
128

128-byte segment: 128-255

96 192128

128B segment

160 224
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288256

...
t0 t15

0 32 64

t3



Threads 0-15 access 4-byte words at 

addresses 116-176

Thread 3 is lowest active, accesses address 
128

128-byte segment: 128-255 (reduce to 64B)

96 192128

64B transaction

160 224

t1 t2

288256

...
t0 t15

0 32 64

t3



Consider the stride of your accesses

__global__ void foo(int* input,

float3* input2)

{

int i = blockDim.x * blockIdx.x

+ threadIdx.x;

// Stride 1

int a = input[i];

// Stride 2, half the bandwidth is wasted

int b = input[2*i];

// Stride 3, 2/3 of the bandwidth wasted

float c = input2[i].x;

}



Example: Array of Structures (AoS)

struct record

{

int key;

int value;

int flag;

};

record  *d_records;

cudaMalloc((void**)&d_records, ...);



Example: Structure of Arrays (SoA)

struct SoA

{

int * keys;

int * values;

int * flags;

};

SoA d_SoA_data;

cudaMalloc((void**)&d_SoA_data.keys, ...);

cudaMalloc((void**)&d_SoA_data.values, ...);

cudaMalloc((void**)&d_SoA_data.flags, ...);



Example: SoA vs. AoS

__global__ void bar(record *AoS_data,

SoA SoA_data)

{

int i = blockDim.x * blockIdx.x

+ threadIdx.x;

// AoS wastes bandwidth

int key = AoS_data[i].key;

// SoA efficient use of bandwidth

int key_better = SoA_data.keys[i];

}



Memory Coalescing

Structure of array is often better than 
array of structures 

Very clear win on regular, stride 1 access 
patterns

Unpredictable or irregular access patterns are 
case-by-case



SHARED MEMORY BANK 

CONFLICTS



Shared Memory

Shared memory is banked
Only matters for threads within a warp

Full performance with some restrictions

Threads can each access different banks

Or can all access the same value

Consecutive words are in different banks

If two or more threads access the same 
bank but different value, get bank 
conflicts



Bank Addressing Examples

No Bank Conflicts No Bank Conflicts
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Thread 5
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Thread 2

Thread 1
Thread 0



Bank Addressing Examples

2-way Bank Conflicts 8-way Bank Conflicts

Thread 11

Thread 10

Thread 9
Thread 8

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2

Bank 1
Bank 0

x8

x8



Trick to Assess Impact On 

Performance

Change all SMEM reads to the same value

All broadcasts = no conflicts

Will show how much performance could be 

improved by eliminating bank conflicts

The same doesn’t work for SMEM writes

So, replace SMEM array indices with 
threadIdx.x

Can also be done to the reads



Additional “memories”

texture and __constant__

Read-only

Data resides in global memory

Different read path:

includes specialized caches



Constant Memory

Data stored in global memory, read through 

a constant-cache path

__constant__ qualifier in declarations

Can only be read by GPU kernels

Limited to 64KB

To be used when all threads in a warp read 

the same address

Serializes otherwise

Throughput: 

32 bits per warp per clock per multiprocessor



CONTROL FLOW 

DIVERGENCE



Control Flow

Instructions are issued per 32 threads 

(warp)

Divergent branches:

Threads within a single warp take different paths

if-else, ...

Different execution paths within a warp are 

serialized

Different warps can execute different code 

with no impact on performance



Control Flow

Avoid diverging within a warp

Example with divergence: 

if (threadIdx.x > 2) {...}

else {...}

Branch granularity < warp size

Example without divergence:

if (threadIdx.x / WARP_SIZE > 2)

{...}

else {...}

Branch granularity is a whole multiple of 

warp size



Example: Divergent Iteration

__global__ void per_thread_sum(int *indices,

float *data,

float *sums)

{

...

// number of loop iterations is data

// dependent

for(int j=indices[i];j<indices[i+1]; j++)

{

sum += data[j];

}

sums[i] = sum;

}



Iteration Divergence

A single thread can drag a whole warp with 

it for a long time

Know your data patterns

If data is unpredictable, try to flatten peaks 

by letting threads work on multiple data 

items



OCCUPANCY



29

Reminder: Thread Scheduling

SM implements zero-overhead warp 

scheduling
At any time, only one of the warps is executed by 

SM *

Warps whose next instruction has its inputs 

ready for consumption are eligible for execution

Eligible Warps are selected for execution on a 

prioritized scheduling policy

All threads in a warp execute the same 

instruction when selected

TB1

W1

TB = Thread Block, W = Warp

TB2

W1

TB3

W1

TB2

W1

TB1

W1

TB3

W2

TB1

W2

TB1

W3

TB3

W2

Time

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4



Thread Scheduling

What happens if all warps are stalled?

No instruction issued  performance lost

Most common reason for stalling?

Waiting on global memory

If your code reads global memory every 

couple of instructions

You should try to maximize occupancy



What determines occupancy?

Register usage per thread & shared memory 

per thread block



Resource Limits (1)

TB 0

Registers

Pool of registers and shared memory per SM
Each thread block grabs registers & shared 

memory

If one or the other is fully utilized -> no more 

thread blocks

Shared Memory

TB 1

TB 2

TB 0

TB 1

TB 2

TB 0

Registers

TB 1

TB 0

TB 1

Shared Memory



Resource Limits (2)

Can only have 8 thread blocks per SM
If they’re too small, can’t fill up the SM

Need 128 threads / TB (gt200), 192 thread/ TB 

(gf100)

Higher occupancy has diminishing returns 

for hiding latency



Hiding Latency with more threads



How do you know what you’re 

using?

Use  nvcc -Xptxas –v to get register and 

shared memory usage

Plug those numbers into CUDA Occupancy 

Calculator











How to influence how many registers 

you use

Pass option –maxrregcount=X to nvcc

This isn’t magic, won’t get occupancy for 

free

Use this very carefully when you are right 

on the edge



KERNEL LAUNCH OVERHEAD



Kernel Launch Overhead

Kernel launches aren’t free
A null kernel launch will take non-trivial time

Actual number changes with HW generations 

and driver software, so I can’t give you one 

number

Independent kernel launches are cheaper 

than dependent kernel launches
Dependent launch: Some readback to the cpu

If you are launching lots of small grids you 

will lose substantial performance due to this 

effect



Kernel Launch Overheads

If you are reading back data to the cpu for 

control decisions, consider doing it on the 

GPU 

Even though the GPU is slow at serial 

tasks, can do surprising amounts of work 

before you used up kernel launch overhead



Performance Considerations

Measure, measure, then measure some 

more!

Once you identify bottlenecks, apply 

judicious tuning

What is most important depends on your 

program

You’ll often have a series of bottlenecks, where 

each optimization gives a smaller boost than 

expected



Questions?



Backup



Shared Memory

Uses:
Inter-thread communication within a block
Cache data to reduce global memory accesses
Use it to avoid non-coalesced access

Organization:
16 banks, 32-bit wide banks (Tesla)
32 banks, 32-bit wide banks (Fermi) 
Successive 32-bit words belong to different 
banks

Performance:
32 bits per bank per 2 clocks per 
multiprocessor
smem accesses are per 16-threads (half-warp)
serialization: if n threads (out of 16) access the 
same bank, n accesses are executed serially
broadcast: n threads access the same word in 
one fetch



Example: Averaging Peaks

__global__ void per_thread_sum(...)

{

while(!done)

{

for(int j=indices[i];

j<min(indices[i+1],indices[i]+MAX_ITER);

j++)

{...}

}

}


