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Lecture 5: Performance Considerations



But First!

® Always measure where your time is
going!

® cvenif you think you know where it is going
® siart coarse, go fine-grained as need be
® Keep in mind Amdahl’s Law when

optimizing any part of your code

® Don’t continue to optimize once a part is only a
small fraction of overall execution time



Performance Considerations

4 Memory Coalescing

® Shared Memory Bank Conflicts
® Control-Flow Divergence

4 Occupancy

® Kernel Launch Overheads



MEMORY COALESCING



Memory Coalescing

® Off-chip memory Is accessed In

chunks

®cvenif you read only a single word

® s you don’t use whole chunk, bandwidth is
wasted

® Chunks are aligned to multiples of 32/64/128
bytes

® Unaligned accesses will cost more



Threads 0-15 access 4-byte words at
addresses 116-176

® Thread 0 is lowest active, accesses address
116

® 128-byte segment: 0-127
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Threads 0-15 access 4-byte words at
addresses 116-176

® Thread 0 is lowest active, accesses address
116

® 128-byte segment: 0-127 (reduce to 64B)
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Threads 0-15 access 4-byte words at
addresses 116-176

® Thread 0 is lowest active, accesses address
116

® 128-byte segment: 0-127 (reduce to 32B)
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Threads 0-15 access 4-byte words at
addresses 116-176

® Thread 3 is lowest active, accesses address
128

® 128-byte segment: 128-255
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Threads 0-15 access 4-byte words at
addresses 116-176

® Thread 3 is lowest active, accesses address
128

® 128-byte segment: 128-255 (reduce to 64B)
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Consider the stride of your accesses

__global  wvoid foo(int* input,
float3* input2)

int 1 = blockDim.x * blockIdx.x
+ threadIdx.x;
// Stride 1
int a = input[i];
// Stride 2, half the bandwidth is wasted
int b = input[2*i];
// Stride 3, 2/3 of the bandwidth wasted
float ¢ = input2[i] .x;



Example: Array of Structures (AoS)

struct record
{
int key;
int value;

int flag;
};

record *d_records;

cudaMalloc ((void**) &d records, ...);



Example: Structure of Arrays (SoA)
struct SoA
{
int * keys;
int * wvalues;
int * flags;
};

SoA d SoA data;

cudaMalloc((void**) &d SoA data.keys, ...);
cudaMalloc((void**) &d SoA data.values, ...);
cudaMalloc((void**) &d SoA data.flags, ...);



Example: SOA vs. AoS

__global  void bar(record *AoS data,
SoA SoA data)

int 1 = blockDim.x * blockIdx.x
+ threadIdx.x;
// AoS wastes bandwidth
int key = AoS data[i] .key;
// SoA efficient use of bandwidth
int key better = SoA data.keys[i];



Memory Coalescing

® Structure of array Is often better than
array of structures

® Very clear win on regular, stride 1 access
patterns

® Unpredictable or irregular access patterns are
case-by-case



SHARED MEMORY BANK
CONFLICTS



Shared Memory

® Shared memory Is banked
® Only matters for threads within a warp
® rull performance with some restrictions
® Threads can each access different banks
® Or can all access the same value

® Consecutive words are in different banks

® If two or more threads access the same
bank but different value, get bank
conflicts



Bank Addressing Examples

® No Bank Conflicts

® No Bank Conflicts




Bank Addressing Examples

® 2-way Bank Conflicts

® 8-way Bank Conflicts




Trick to Assess Impact On
Performance

® Change all SMEM reads to the same value
® All broadcasts = no conflicts

® Will show how much performance could be
Improved by eliminating bank conflicts

® The same doesn’t work for SMEM writes

® So, replace SMEM array indices with
threadIdx.x

® Can also be done to the reads



Additional “memories”

® textureand constant

Read-only
Data resides in global memory

Different read path:
® includes specialized caches



Constant Memory

® Data stored in global memory, read through
a constant-cache path
® constant  qualifier in declarations

®can only be read by GPU kernels
® Limited to 64KB
® 10 be used when all threads in a warp read
the same address
® Serializes otherwise
4 Throughput:

® 37 pits per warp per clock per multiprocessor



CONTROL FLOW
DIVERGENCE



Control Flow

® Instructions are issued per 32 threads

(warp)
® Divergent branches:
® Threads within a single warp take different paths
® 1f-else, ...

® pifferent execution paths within a warp are
serialized

® Different warps can execute different code
with no impact on performance



Control Flow
® Avoid diverging within a warp
® Example with divergence:
if (threadIdx.x > 2) {...}
else {...}
Branch granularity < warp size
® Example without divergence:
if (threadIdx.x / WARP SIZE > 2)

{...}

else {...}

Branch granularity is a whole multiple of
warp size



Example: Divergent Iteration

__global  void per thread sum(int *indices,
float *data,

float *sums)

// number of loop iterations is data
// dependent
for(int j=indices[i];]j<indices[i+l1l]; j++)
{
sum += data[]j]:
}

sums[i] = sum;



Iteration Divergence

®A single thread can drag a whole warp with
it for along time

® Know your data patterns

® f datais unpredictable, try to flatten peaks
by letting threads work on multiple data
items



OCCUPANCY



Reminder: Thread Scheduling

® swm Implements zero-overhead warp
scheduling
® At any time, only one of the warps is executed by
SM *
® Warps whose next instruction has its inputs
ready for consumption are eligible for execution

® Eligible Warps are selected for execution on a
prioritized scheduling policy

® All threads in a warp execute the same
Instruction when selected

TB1, W1 stall

—T1B2, W1 stal—}———TB3, W2 stall——— |

Instruction:




Thread Scheduling

® what happens if all warps are stalled?
® No instruction issued > performance lost

® Most common reason for stalling?
® Waiting on global memory

®f your code reads global memory every
couple of instructions

® vou should try to maximize occupancy



What determines occupancy?

® Register usage per thread & shared memory
per thread block



Resource Limits (1)

Registers Shared Memory Registers Shared Memory

B 2
TB1
B 2 8
TBO
TBO B 1
TBO
TBO

® pool of registers and shared memory per SM

® cach thread block grabs registers & shared
memory

® |t one or the other is fully utilized -> no more
thread blocks




Resource Limits (2)

® can only have 8 thread blocks per SM

® they’re too small, can’t fill up the SM

® Need 128 threads / TB (gt200), 192 thread/ TB
(gf100)

® Higher occupancy has diminishing returns
for hiding latency



Hiding Latency with more threads

Throughput, 32-bit words

256 384 514 640 768

Threads Per Multiprocessor




How do you know what you’re
using?

® Use nvee -Xptxas -vto get register and
shared memory usage

® Plug those numbers into CUDA Occupancy
Calculator
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How to influence how many registers
you use

4 Pass option -maxrregcount=Xto nvcc

® This isn’t magic, won’t get occupancy for
free

® Use this very carefully when you are right
on the edge



KERNEL LAUNCH OVERHEAD



Kernel Launch Overhead

® Kernel launches aren’t free
® A null kernel launch will take non-trivial time

® Actual number changes with HW generations
and driver software, so | can’t give you one
number

® Independent kernel launches are cheaper
than dependent kernel launches
® Dependent launch: Some readback to the cpu

®f you are launching lots of small grids you
will lose substantial performance due to this
effect



Kernel Launch Overheads

®f you are reading back data to the cpu for
control decisions, consider doing it on the
GPU

® Even though the GPU is slow at serial
tasks, can do surprising amounts of work
before you used up kernel launch overhead



Performance Considerations

® Measure, measure, then measure some
more!

® once you identify bottlenecks, apply
judicious tuning
® Wwhat is most Important depends on your
program

® vou’'ll often have a series of bottlenecks, where
each optimization gives a smaller boost than
expected



Questions?



Backup



Shared Memory

® Uses:
Inter-thread communication within a block
Cache datato reduce global memory accesses
Use it to avoid non-coalesced access

® O&ganization:

banks, wide banks (Tesla)
banks, wide banks (Fermi)
Successive 32-bit words belong to different

banks
® Performance:

If n threads (out of 16) access the
same bank, n accesses are executed serially

®
: smem accesses are per 16-threads (half-warp)
® threads access the same word in

one fetch



Example: Averaging Peaks

~__global  void per thread sum(...)

{

while (!'done)
{
for(int j=indices|[1i];
j<min(indices[i+l],indices[i]+MAX ITER) ;
++)
{...}



