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Problem Overview

Given a sequence of n integers, called keys

A = [8 4 3 9 0 9 7]

Place keys in output in non-decreasing order

sorted(A) = [0 3 4 7 8 9 9]

Optionally with equal values in their original order

“stable” sorts provide this; “unstable” sorts do not
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Why Sorting?

Put data in order

Make searching easier

Build data structures in parallel

… and many others



© 2010 NVIDIA Corporation

Some assumptions for today

Keys are integers of fixed length (e.g., 32 bits)

Keys are not part of larger records

Sequences reside entirely in main memory

“Main memory” of the processor we’re using

in CPU memory for CPU sorts

in GPU memory for GPU sorts
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Sorting problems we won’t discuss

External memory sorting

data doesn’t fit in memory all at once

Distributed sorting

data resides in physically separate memories

Long and/or variable length keys

can significantly change performance trade offs

Among others …
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How do we sort?
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Some simple sorts

Selection
remove the smallest key of the input

append at the end of the output

repeat

Insertion
remove the next key of the input

insert into the output in sorted order

repeat

Transposition
find pair where A[i]>A[i+1] and swap them

repeat until there are none

Parallel

(potentially)

Sequential

(mostly)
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Odd-Even Transposition Sort

Parallelizing transposition sort:

assign 1 thread to each element

use odd/even phases to prevent contention

while A is not sorted:

if is_odd(i) and (A[i+1] < A[i])
swap(A[i], A[i+1])

barrier

if is_even(i) and (A[i+1] < A[i])
swap(A[i], A[i+1])

barrier

requires at most n/2 iterations
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Counting Sort

Step 1:  Count elements sorting to left of A[i]

Step 2:  Scatter to position in sorted order

rank[i] = count( j<i where A[j] ≤ A[i] )
+ count( j>i where A[j] < A[i] )

permute( A[i] -> A[rank[i]] )

A[i] · · ·· · ·

A[i] A[j] < A[i]A[j] ≤ A[i]
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Counting Sort (alternate)

Step 1:  Count places that A[i] needs to move

Step 2:  Scatter to position in sorted order

offset[i] = count( j<i where A[j] > A[i] )
- count( j>i where A[j] < A[i] )

permute( A[i] -> A[i-offset[i]] )

A[i] · · ·· · ·

A[i] A[j] < A[i]A[j] > A[i]
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Binary Counting Sort

If A[i] is 0:

If A[i] is 1:

And scatter:

offset[i] = count( j<i where A[j] == 1 )

A[i]count ones before

offset[i] = -count( j>i where A[j] == 0 )

A[i] count zeros after

permute( A[i] -> A[i-offset[i]] )
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A Simple Radix Sort

Apply binary counting sort to each bit of the keys, from LSB to MSB

def radix_sort(A, msb=32):

def delta(flag, ones_before, zeros_after):
if flag==0:  return -ones_before
else:        return +zeros_after

lsb = 0

while lsb<msb:

flags = [(x>>lsb)&1 for x in A]
ones  = scan(plus, flags)
zeros = rscan(plus, [f^1 for f in flags])

offsets = map(delta, flags, ones, zeros)
A = permute_with_offsets(A, offsets)

lsb = lsb+1

return A
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Is this efficient?

Apply binary counting sort to each bit of the keys, from LSB to MSB

def radix_sort(A, msb=32):

def delta(flag, ones_before, zeros_after):
if flag==0:  return -ones_before
else:        return +zeros_after

lsb = 0

while lsb<msb:

flags = [(x>>lsb)&1 for x in A]
ones  = scan(plus, flags)
zeros = rscan(plus, [f^1 for f in flags])

offsets = map(delta, flags, ones, zeros)
A = permute_with_offsets(A, offsets)

lsb = lsb+1

return A
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Radix Sort

Apply counting sort to successive digits of keys

Performs d scatter steps for d-digit keys

Scattering in memory is fundamentally costly
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Parallel Radix Sort

Assign tile of data to each block         (1024 elements)

Build per-block histograms of current digit        (4 bit)

Combine per-block histograms (P x 16)

Scatter

cf. Satish et al., Designing efficient sorting algorithms for manycore GPUs, IPDPS 2009.
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Per-Block Histograms

Perform b parallel splits for b-bit digit

Each split is just a prefix sum of bits

each thread counts 1 bits to its left

Write bucket counts & partially sorted tile

sorting tile improves scatter coherence later
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Combining Histograms

Write per-block counts in column major order & scan
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cf. Zagha & Blelloch, Radix sort for vector multiprocessors, SC’91.
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Radix Sorting Rate (pairs/sec)
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Merge Sort

Divide input array into 256-element tiles

Sort each tile independently

Produce sorted output with tree of merges

sort sort sort sort sort sortsort sort

merge merge mergemerge

merge merge

merge
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Merge Sorting Rate
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Some other techniques

Quicksort / Sample Sort

partition keys into non-overlapping ranges

sort each range individually

Sorting networks

fixed network of comparison operators

e.g., bitonic sort, odd-even merge sort
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Questions?

mgarland@nvidia.com
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Odd-Even Merge Sort

template<typename T, typename Cmp>

__device__ void oddeven_sort(T *keys, int i, int n, Cmp lt)

{

for(unsigned int p=n/2; p>0; p/=2) {

unsigned int q=n/2, r=0, d=p;

while( q>=p ) {

if( i<(n-d) && (i&p)==r ) {

unsigned int j = i+d;

T xi = keys[i], xj = keys[j];

if( lt(xj,xi) ) {

keys[i] = xj;

keys[j] = xi;

}

}

d = q-p; q = q/2; r = p;

__syncthreads();

}

}

}

Algorithm M, Section 5.2.2

The Art of Computer Programming, Vol 3

D. E. Knuth


