Parallel Sorting

Michael Garland

NVIDIA Research

Problem Overview

- Given a sequence of \boldsymbol{n} integers, called keys

$$
A=\left[\begin{array}{lllllll}
8 & 4 & 3 & 9 & 0 & 9 & 7
\end{array}\right]
$$

- Place keys in output in non-decreasing order

$$
\operatorname{sorted}(A)=\left[\begin{array}{lllllll}
0 & 3 & 4 & 7 & 8 & 9
\end{array}\right]
$$

- Optionally with equal values in their original order
- "stable" sorts provide this; "unstable" sorts do not

Why Sorting?

- Put data in order
- Make searching easier
- Build data structures in parallel
- ... and many others

Some assumptions for today

- Keys are integers of fixed length (e.g., 32 bits)
- Keys are not part of larger records
- Sequences reside entirely in main memory
- "Main memory" of the processor we're using
- in CPU memory for CPU sorts
- in GPU memory for GPU sorts

Sorting problems we won't discuss

- External memory sorting
- data doesn't fit in memory all at once
- Distributed sorting
- data resides in physically separate memories
- Long and/or variable length keys
- can significantly change performance trade offs
- Among others ...

How do we sort?

nVIDIA.

Some simple sorts

- Selection
- remove the smallest key of the input

Sequential (mostly)

- append at the end of the output
- repeat
- Insertion
- remove the next key of the input
- insert into the output in sorted order
- repeat
- Transposition
- find pair where A[i]>A[i+1] and swap them
- repeat until there are none

Odd-Even Transposition Sort

- Parallelizing transposition sort:
- assign 1 thread to each element
- use odd/even phases to prevent contention
while A is not sorted:

$$
\begin{gathered}
\text { if is_odd(i) and }(A[i+1]<A[i]) \\
\operatorname{swap}(A[i], A[i+1])
\end{gathered}
$$

barrier

```
if is_even(i) and (A[i+1] < A[i])
    Swap(A[i], A[i+1])
```

barrier

Counting Sort

- Step 1: Count elements sorting to left of A[i]

$$
\begin{aligned}
\operatorname{rank}[i] & =\operatorname{count}(j<i \text { where } A[j] \leq A[i]) \\
& +\operatorname{count}(j>i \text { where } A[j]<A[i])
\end{aligned}
$$

$$
A[j] \leq A[i] \quad A[i] \quad A[j]<A[i]
$$

- Step 2: Scatter to position in sorted order permute(A[i] -> A[rank[i]])

$$
A[i]
$$

Counting Sort (alternate)

- Step 1: Count places that A[i] needs to move

$$
\begin{aligned}
\operatorname{offset}[i] & =\operatorname{count}(j<i \text { where } A[j]>A[i]) \\
& -\operatorname{count}(j>i \text { where } A[j]<A[i])
\end{aligned}
$$

$$
A[j]>A[i] \quad A[i] \quad A[j]<A[i]
$$

- Step 2: Scatter to position in sorted order permute(A[i] -> A[i-offset[i]])

$$
A[i]
$$

Binary Counting Sort

- If $\mathrm{A}[\mathrm{i}]$ is $\mathbf{0}$:
offset[i] = count($j<i$ where $A[j]==1$)
count ones before A[i]
- If $A[i]$ is 1:
offset[i] = -count($j>i$ where $A[j]==0$)

```
A[i] count zeros after
```

- And scatter:
permute(A[i] -> A[i-offset[i]])

A Simple Radix Sort

Apply binary counting sort to each bit of the keys, from LSB to MSB

```
def radix_sort(A, msb=32):
    def delta(flag, ones_before, zeros_after):
        if flag==0: return -ones_before
        else: return +zeros_after
    lsb = 0
    while lsb<msb:
```

```
        flags = [(x>>lsb)&1 for x in A]
```

 flags = [(x>>lsb)&1 for x in A]
 ones = scan(plus, flags)
 ones = scan(plus, flags)
 zeros = rscan(plus, [f^1 for f in flags])
 zeros = rscan(plus, [f^1 for f in flags])
 offsets = map(delta, flags, ones, zeros)
 offsets = map(delta, flags, ones, zeros)
 A = permute_with_offsets(A, offsets)
 A = permute_with_offsets(A, offsets)
 lsb = lsb+1
 lsb = lsb+1
 return A
    ```

\section*{Is this efficient?}

Apply binary counting sort to each bit of the keys, from LSB to MSB
```

def radix_sort(A, msb=32):
def delta(flag, ones_before, zeros_after):
if flag==0: return -ones_before
else: return +zeros_after
lsb = 0
while lsb<msb:

```
```

 flags = [(x>>lsb)&1 for x in A]
    ```
        flags = [(x>>lsb)&1 for x in A]
        ones = scan(plus, flags)
        ones = scan(plus, flags)
        zeros = rscan(plus, [f^1 for f in flags])
        zeros = rscan(plus, [f^1 for f in flags])
        offsets = map(delta, flags, ones, zeros)
        offsets = map(delta, flags, ones, zeros)
        A = permute_with_offsets(A, offsets)
        A = permute_with_offsets(A, offsets)
        lsb = lsb+1
        lsb = lsb+1
    return A
```


Radix Sort

- Apply counting sort to successive digits of keys
- Performs d scatter steps for d-digit keys
- Scattering in memory is fundamentally costly

Parallel Radix Sort

- Assign tile of data to each block
(1024 elements)
- Build per-block histograms of current digit
(4 bit)
- Combine per-block histograms
(P x 16)
- Scatter

Per-Block Histograms

- Perform b parallel splits for b-bit digit
- Each split is just a prefix sum of bits
- each thread counts 1 bits to its left
- Write bucket counts \& partially sorted tile
- sorting tile improves scatter coherence later

Combining Histograms

- Write per-block counts in column major order \& scan

Radix Sorting Rate (pairs/sec)

nVIDIA.

Merge Sort

- Divide input array into 256-element tiles
- Sort each tile independently

| sort |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Produce sorted output with tree of merges

Merge Sorting Rate

חVIDIA.

Some other techniques

- Quicksort / Sample Sort
- partition keys into non-overlapping ranges
- sort each range individually
- Sorting networks
- fixed network of comparison operators
- e.g., bitonic sort, odd-even merge sort

Questions?

mgarland@nvidia.com

Odd-Even Merge Sort

```
template<typename T, typename Cmp>
__device__ void oddeven_sort(T *keys, int i, int n, Cmp lt)
    for(unsigned int p=n/2; p>0; p/=2) {
        unsigned int q=n/2, r=0, d=p;
        while( q>=p ) {
            if( i<(n-d) && (i&p)==r ) {
                unsigned int j = i+d;
                T xi = keys[i], xj = keys[j];
            if(\frac{lt(xj,xi) ) {}{l}
                        keys[j] = xi;
            }
        }
            d = q-p; q = q/2; r = p;
            __syncthreads();
        }
    }
}```

