
Solving PDEs with CUDA

Jonathan Cohen

jocohen@nvidia.com

NVIDIA Research



© NVIDIA Corporation 2009

PDEs (Partial Differential Equations)

Big topic

Some common strategies

Focus on one type of PDE in this talk

Poisson Equation

Linear equation => Linear solvers

Parallel approaches for solving resulting linear systems



© NVIDIA Corporation 2009

Poisson Equation

Classic Poisson Equation:
2p = rhs (p, rhs scalar fields)

(Laplacian of p = sum of second derivatives)

∂2p/∂x2 + ∂2p/∂y2 + ∂2p/∂z2 = rhs

∂2p/∂x2 ≈ ∂(p+∆x)/∂x - ∂p/∂x

∆x



© NVIDIA Corporation 2009

P[0] P[1] P[2] P[3] P[4] P[5] P[6] P[7]

∂p/∂x = P[4] - P[3]

∆x

∂(p+∆)/∂x = P[5] - P[4]

∆x

To compute Laplacian at P[4]:

1st Derivatives on both sides:

Derivative of 1st Derivatives:

P[5] - P[4] - P[4] - P[3]

∆x ∆x

∆x

1/∆x2 ( P[3] – 2P[4] + P[5] )

1 1-21/∆x2



© NVIDIA Corporation 2009

Poisson Matrix

Poisson Equation is a sparse linear system

-2 1 1

1 -2 1

1 -2 1

1 -2 1

1 -2 1

1 -2 1

1 -2 1

1 1 -2

P[0]

P[1]

P[2]

P[3]

P[4]

P[5]

P[6]

P[7]

= ∆x2 RHS



© NVIDIA Corporation 2009

Approach 1: Iterative Solver

Solve M p = r, where M and r are known

Error is easy to estimate: E = M p‟ - r

Basic iterative scheme:

Start with a guess for p, call it p‟

Until | M p‟ - r | < tolerance

p‟ <= Update(p‟, M, r)

Return p‟



© NVIDIA Corporation 2009

Serial Gauss-Seidel Relaxation

Loop until convergence:

For each equation j = 1 to n

Solve for P[j] 

E.g. equation for P[1]:

P[0] - 2P[1] + P[2] = h*h*RHS[1]

Rearrange terms:

P[1] = P[0] + P[2] - h*h*RHS[1]

2



© NVIDIA Corporation 2009

One Pass of Serial Algorithm

P[0]

P[1]

P[2]

P[3]

P[4]

P[5]

P[6]

P[7]

P[0] = P[7] + P[1] -h*h*RHS[0]

2

P[0]

P[1]

P[2]

P[3]

P[4]

P[5]

P[6]

P[7]

P[1] = P[2] + P[0] -h*h*RHS[1]

2

P[0]

P[1]

P[2]

P[3]

P[4]

P[5]

P[6]

P[7]

P[2] = P[1] + P[3] -h*h*RHS[2]

2

P[0]

P[1]

P[2]

P[3]

P[4]

P[5]

P[6]

P[7]

P[7] = P[6] + P[0] -h*h*RHS[7]

2



© NVIDIA Corporation 2009

Can choose any order in which to update equations

Convergence rate may change, but convergence still guaranteed

“Red-black” ordering:

Red (odd) equations independent of each other

Black (even) equations independent of each other

Red-Black Gauss-Seidel Relaxation

P[0] P[1] P[2] P[3] P[4] P[5] P[6] P[7]



© NVIDIA Corporation 2009

Parallel Gauss-Seidel Relaxation

Loop n times (until convergence)

For each even equation j = 0 to n-1

Solve for P[j] 

For each odd equation j = 1 to n

Solve for P[j]

For loops are parallel – perfect for CUDA kernel



© NVIDIA Corporation 2009

One Pass of Parallel Algorithm

P[0]

P[1]

P[2]

P[3]

P[4]

P[5]

P[6]

P[7]

P[0] = P[7] + P[1] -h*h*RHS[0]

2

P[2] = P[1] + P[3] -h*h*RHS[2]

2

P[4] = P[3] + P[5] -h*h*RHS[4]

2

P[6] = P[5] + P[7] -h*h*RHS[6]

2

P[0]

P[1]

P[2]

P[3]

P[4]

P[5]

P[6]

P[7]

P[1] = P[0] + P[2] -h*h*RHS[1]

2

P[3] = P[2] + P[4] -h*h*RHS[3]

2

P[5] = P[4] + P[6] -h*h*RHS[5]

2

P[7] = P[6] + P[0] -h*h*RHS[7]

2



© NVIDIA Corporation 2009

CUDA Pseudo-code

__global__ void RedBlackGaussSeidel(

Grid P, Grid RHS, float h, int red_black)

{

int i = blockIdx.x*blockDim.x + threadIdx.x;

int j = blockIdx.y*blockDim.y + threadIdx.y;

i*=2;  

if (j%2 != red_black) i++;

int idx = j*RHS.jstride + i*RHS.istride;

P.buf[idx] = 1.0/6.0*(-h*h*R.buf[idx] +

P.buf[idx + P.istride] + P.buf[idx – P.istride] +

P.buf[idx + P.jstride] + P.buf[idx – P.jstride]);

}

// on host:

for (int i=0; i < 100; i++) {

RedBlackGaussSeidel<<<Dg, Db>>>(P, RHS, h, 0);

RedBlackGaussSeidel<<<Dg, Db>>>(P, RHS, h, 1);

}



© NVIDIA Corporation 2009

Red-Black scheme is bad for coalescing

Read every other grid cell => half memory bandwidth

Lots of reuse between adjacent threads (blue and green)

Texture cache (Fermi L1 cache) improves performance by 2x

Lots of immediate reuse, very small working set

In my tests, (barely) beats software-managed shared memory

Optimizing the Poisson Solver

P[0] P[1] P[2] P[3] P[4] P[5] P[6] P[7]



© NVIDIA Corporation 2009

What about discretization over non-Cartesian grids?

Finite element, finite volume, etc.

Need discrete version of differential operator 

(Laplacian) to this geometry

Works out to same thing:

L p = r

where L is matrix of Laplacian discretizations

Generalizing to non-grids

- 4
1.21.2

1.6



© NVIDIA Corporation 2009

Graph Coloring

Need partition into non-adjacent sets

Classic „graph coloring‟ problem

Red-black is special case, where 2 colors suffice

Too many colors => not enough parallelism within each 

color

Not enough colors => hard coloring problem

Until convergence:

Update green terms in parallel

Update orange terms in parallel

Update blue terms in parallel



© NVIDIA Corporation 2009

Back to the Poisson Matrix…

1D Poisson Matrix has particular sparse structure:

3 non-zeros per row, around the diagonal

-2 1 1

1 -2 1

1 -2 1

1 -2 1

1 -2 1

1 -2 1

1 -2 1

1 1 -2

P[0]

P[1]

P[2]

P[3]

P[4]

P[5]

P[6]

P[7]

= ∆x2 RHS



© NVIDIA Corporation 2009

Approach 2: Direct Solver

Solve the matrix equation directly

Exploit sparsity pattern – all zeroes except diagonal, 

1 above, 1 below = “tridiagonal” matrix

Many applications for tridiagonal matrices

Vertical diffusion (adjacent columns do not interact)

ADI methods (e.g. separate 2D blur x blur, y blur)

Linear solvers (multigrid, preconditioners, etc.)

Typically many small tridiagonal systems => 

per-CTA algorithm



© NVIDIA Corporation 2009

What is a tridiagonal system?



© NVIDIA Corporation 2009

A Classic Sequential Algorithm

Gaussian elimination in tridiagonal case (Thomas 

algorithm)

Phase 1: Forward 

Elimination

Phase 2: Backward 

Substitution



© NVIDIA Corporation 2009

Cyclic Reduction: Parallel algorithm

B1 C1 A1

A2 B2 C2

A3 B3 C3

A4 B4 C4

A5 B5 C5

A6 B6 C6

A7 B7 C7

C8 A8 B8

X1

X2

X3

X4

X5

X6

X7

X8

=

R1

R2

R3

R4

R5

R6

R7

R8

Basic linear algebra: 

Take any row, multiply by scalar, add to another row => Solution unchanged



© NVIDIA Corporation 2009

Scale Equations 3 and 5

B1 C1 A1

A2 B2 C2

A3 B3 C3

A4 B4 C4

A5 B5 C5

A6 B6 C6

A7 B7 C7

C8 A8 B8

-A4/B3 *

-C4/B5 *

X1

X2

X3

X4

X5

X6

X7

X8

=

R1

R2

R3

R4

R5

R6

R7

R8



© NVIDIA Corporation 2009

Add scaled Equations 3 & 5 to 4

B1 C1 A1

A2 B2 C2

A3’ -A4 C3’

A4 B4 C4

A5’ -C4 C5’

A6 B6 C6

A7 B7 C7

C8 A8 B8

X1

X2

X3

X4

X5

X6

X7

X8

R1

R2

R3

R4

R5

R6

R7

R8

=

+

+



© NVIDIA Corporation 2009

Zeroes entries 4,3 and 4,5

B1 C1 A1

A2 B2 C2

A3’ -A4 C3’

A3’ B4’ C5’

A5’ -C4 C5’

A6 B6 C6

A7 B7 C7

C8 A8 B8

X1

X2

X3

X4

X5

X6

X7

X8

R1

R2

R3

R4’

R5

R6

R7

R8

=



© NVIDIA Corporation 2009

Repeat operation for all equations

B1’ C2’ A8’

B2’ C3’ A1’

A2’ B3’ C4’

A3’ B4’ C5’

A4’ B5’ C6’

A5’ B6’ C7’

C8’ A6’ B7’

C1’ A7’ B8’

X1

X2

X3

X4

X5

X6

X7

X8

R1’

R2’

R3’

R4’

R5’

R6’

R7’

R8’

=



© NVIDIA Corporation 2009

Permute – 2 independent blocks

B1’ C2’ A8’

A2’ B3’ C4’

A4’ B5’ C6’

C8’ A6’ B7’

B2’ C3’ A1’

A3’ B4’ C5’

A5’ B6’ C7’

C1’ A7’ B8’

X1

X3

X5

X7

X2

X4

X6

X8

R1’

R3’

R5’

R7’

R3’

R4’

R6’

R8’

=

Odd

Even



© NVIDIA Corporation 2009

Cyclic Reduction Ingredients

Apply this transformation (pivot + permute)

Split (n x n) into 2 independent (n/2 x n/2)

Proceed recursively

Two approaches:

Recursively reduce both submatrices until n 1x1 matrices 

obtained.  Solve resulting diagonal matrix.

Recursively reduce odd submatrix until single 1x1 system.  

Solve system.  Reverse process via back-substitution.



© NVIDIA Corporation 2009

Cyclic Reduction (CR)

Forward 

Reduction

Backward

Substitution

8-unknown system

4-unknown system

2-unknown system

Solve 2 unknowns

Solve the rest 2 unknowns

Solve the rest 4 unknowns

2 threads working4 threads working1 thread working

2*log2 (8)-1 = 2*3 -1 = 5 steps



© NVIDIA Corporation 2009

Parallel Cyclic Reduction (PCR)

Forward 

Reduction

4 threads working

log2 (8) = 3 steps

One 8-unknown system

Two 4-unknown systems

Four 2-unknown systems

Solve all unknowns



© NVIDIA Corporation 2009

Work vs. Step Efficiency

CR does O(n) work, requires 2 log(n) steps

PCR does O(n log n) work, requires log(n) steps

Smallest granularity of work is 32 threads: 

performing fewer than 32 math ops = same cost as 

32 math ops

Here‟s an idea:

Save work when > 32 threads active (CR)

Save steps when < 32 threads active (PCR)



© NVIDIA Corporation 2009

Hybrid Algorithm

System size reduced at the beginning

No idle processors

Fewer algorithmic steps

Switch to PCR

Switch back to 

CR

Even more beneficial because of:

bank conflicts

control overhead



© NVIDIA Corporation 2009

PCR vs Hybrid

Make tradeoffs between the computation, memory 

access, and control

The earlier you switch from CR to PCR

The fewer bank conflicts, the fewer algorithmic steps

But more work



© NVIDIA Corporation 2009

Hybrid Solver – Optimal cross-over

0

0.2

0.4

0.6

0.8

1

1.2

2 4 8 16 32 64 128 256 512

Optimal performance of hybrid solver
Solving 512 systems of 512 

unknowns

Time 

(milliseconds)

CR PCRHybrid
Optimal intermediate 

system size



© NVIDIA Corporation 2009

Results: Tridiagonal Linear Solver

Time 

(milliseconds)

PCI-E: CPU-GPU data transfer

MT GE: multi-threaded CPU Gaussian Elimination

GEP: CPU Gaussian Elimination with pivoting (from LAPACK)            

2.5x 1.3x

12x

From Zhang et al., “Fast Tridiagonal Solvers on GPU.” PPoPP 2010.

Solve 512 systems of 512 unknowns

1.07 0.53 0.42

4.08
5.24

9.30

11.8

0

2

4

6

8

10

12

14

CR
PCR

Hyb
rid

PCI-E

M
T G

E GE
GEP

CR

PCR

Hybrid

PCI-E

MT GE

GE

GEP

2.5x 1.3x

12x



© NVIDIA Corporation 2009

Summary

Linear PDE => Linear solver (e.g. Poisson Equation)

2 basic approaches: Iterative vs. Direct

Parallel iterative solver (Red Black Gauss Seidel)

Design update procedure so multiple terms can be updated in 

parallel

Parallel direct solver (Cyclic Reduction)

Exploit structure of matrix to solve using parallel operations

„General purpose‟ solvers largely mythical.  Most people use 

special purpose solvers => Lots of good research potential 

mining this field


