#  <br> nVIDIA. Solving PDEs with CUDA Jonathan Cohen <br> jocohen@nvidia.com 

NVIDIA Research

## PDEs (Partial Differential Equations)

- Big topic
- Some common strategies
- Focus on one type of PDE in this talk
- Poisson Equation
- Linear equation $=>$ Linear solvers
- Parallel approaches for solving resulting linear systems


## Poisson Equation

Classic Poisson Equation: ${ }^{2} p=$ rhs ( $p$, rhs scalar fields)
(Laplacian of $p=$ sum of second derivatives)
$\partial^{2} p / \partial x^{2}+\partial^{2} p / \partial y^{2}+\partial^{2} p / \partial z^{2}=$ rhs
$\partial^{2} p / \partial x^{2} \approx \underline{\partial(p+\Delta x) / \partial x-\partial p / \partial x}$
$\Delta x$

To compute Laplacian at P[4]:

$1^{\text {st }}$ Derivatives on both sides:

$$
\partial p / \partial x=\frac{P[4]-P[3]}{\Delta x} \quad \partial(p+\Delta) / \partial x=\frac{P[5]-P[4]}{\Delta x}
$$

Derivative of $1^{\text {st }}$ Derivatives:

P[5] - P[4] - P[4] - P[3]

$\square 1 / \Delta x^{2}(P[3]-2 P[4]+P[5])$

## Poisson Matrix

Poisson Equation is a sparse linear system

| -2 | 1 |  |  |  |  |  | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | -2 | 1 |  |  |  |  |  |
|  | 1 | -2 | 1 |  |  |  |  |
|  |  | 1 | -2 | 1 |  |  |  |
|  |  |  | 1 | -2 | 1 |  |  |
|  |  |  |  | 1 | -2 | 1 |  |
|  |  |  |  |  | 1 | -2 | 1 |
|  |  |  |  |  | 1 | -2 |  |
| 1 |  |  |  |  |  |  |  |


| $P[0]$ |
| :---: |
| $P[1]$ |
| $P[2]$ |
| $P[3]$ |
| $P[4]$ |
| $P[5]$ |
| $P[6]$ |
| $P[7]$ |

$=\Delta x^{2}$ RHS

## Approach 1: Iterative Solver

Solve M p = r, where M and r are known Error is easy to estimate: $E=M \quad p^{\prime}-r$

Basic iterative scheme:

Start with a guess for $p$, call it $p^{\prime}$
Until | M p' - r | < tolerance

$$
\left.\mathbf{p}^{\prime}<=\text { Update( } \mathbf{p}^{\prime}, \mathrm{M}, \mathrm{r}\right)
$$

Return $p^{\prime}$

## Serial Gauss-Seidel Relaxation

## Loop until convergence:

For each equation $\mathbf{j}=1$ to $\mathbf{n}$
Solve for P[j]
E.g. equation for $\mathrm{P}[1]$ :

$$
P[0]-2 P[1]+P[2]=h^{*} h^{*} R H S[1]
$$

Rearrange terms:

$$
P[1]=\frac{P[0]+P[2]-h^{*} h^{*} R H S[1]}{2}
$$

## One Pass of Serial Algorithm

## $P[0]=\frac{P[7]+P[1]-h^{*} h^{*} R H S[0]}{2}$

$P[0]$
$P[2]$
$P[3]$
$P[4]$
$P[5]$
$P[6]$

$P[7]$$\quad$| $P[2]$ |
| :--- |
| $P[3]$ |
| $P[4]$ |
| $P[5]$ |
| $P[6]$ |
| $P[7]$ |




## Red-Black Gauss-Seidel Relaxation

Can choose any order in which to update equations

- Convergence rate may change, but convergence still guaranteed
- "Red-black" ordering:

| P[0] | P[1] | P[2] | P[3] | P[4] | P[5] | P[6] | P[7] |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Red (odd) equations independent of each other
- Black (even) equations independent of each other


## Parallel Gauss-Seidel Relaxation

Loop n times (until convergence)
For each even equation $\mathbf{j}=0$ to $\mathbf{n - 1}$
Solve for P[j]
For each odd equation $\mathrm{j}=1$ to n Solve for P[j]

For loops are parallel - perfect for CUDA kernel

## One Pass of Parallel Algorithm



## CUDA Pseudo-code

```
    global__ void RedBlackGaussSeidel(
    Grid P, Grid RHS, float h, int red_black)
{
    int i = blockIdx.x*blockDim.x + threadIdx.x;
    int j = blockIdx.y*blockDim.y + threadIdx.y;
    i*=2;
    if (j%2 != red_black) i++;
    int idx = j*RHS.jstride + i*RHS.istride;
    P.buf[idx] = 1.0/6.0*(-h*h*R.buf[idx] +
        P.buf[idx + P.istride] + P.buf[idx - P.istride] +
        P.buf[idx + P.jstride] + P.buf[idx - P.jstride]);
}
// on host:
for (int i=0; i < 100; i++) {
    RedBlackGaussSeidel<<<Dg, Db>>>(P, RHS, h, 0);
    RedBlackGaussSeidel<<<Dg, Db>>>(P, RHS, h, 1);
}
```


## Optimizing the Poisson Solver

- Red-Black scheme is bad for coalescing
- Read every other grid cell => half memory bandwidth
- Lots of reuse between adjacent threads (blue and green)

- Texture cache (Fermi L1 cache) improves performance by 2 x
- Lots of immediate reuse, very small working set
- In my tests, (barely) beats software-managed shared memory


## Generalizing to non-grids

- What about discretization over non-Cartesian grids?
- Finite element, finite volume, etc.
- Need discrete version of differential operator (Laplacian) to this geometry

- Works out to same thing:

Lp=r
where $L$ is matrix of Laplacian discretizations

## Graph Coloring

- Need partition into non-adjacent sets
- Classic 'graph coloring' problem
- Red-black is special case, where 2 colors suffice
- Too many colors => not enough parallelism within each color
- Not enough colors $=>$ hard coloring problem


Until convergence:
Update green terms in parallel
Update orange terms in parallel
Update blue terms in parallel

## Back to the Poisson Matrix...

1D Poisson Matrix has particular sparse structure:
3 non-zeros per row, around the diagonal

| -2 | 1 |  |  |  |  |  | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | -2 | 1 |  |  |  |  |  |
|  | 1 | -2 | 1 |  |  |  |  |
|  |  | 1 | -2 | 1 |  |  |  |
|  |  |  | 1 | -2 | 1 |  |  |
|  |  |  |  | 1 | -2 | 1 |  |
|  |  |  |  |  | 1 | -2 | 1 |
|  |  |  |  |  | 1 | -2 |  |
| 1 |  |  |  |  |  | 1 |  |



## Approach 2: Direct Solver

- Solve the matrix equation directly
- Exploit sparsity pattern - all zeroes except diagonal, 1 above, 1 below = "tridiagonal" matrix
- Many applications for tridiagonal matrices
- Vertical diffusion (adjacent columns do not interact)
- ADI methods (e.g. separate 2D blur x blur, y blur)
- Linear solvers (multigrid, preconditioners, etc.)
- Typically many small tridiagonal systems $=>$ per-CTA algorithm


## What is a tridiagonal system?



## A Classic Sequential Algorithm

- Gaussian elimination in tridiagonal case (Thomas algorithm)


Piluase R- Enictivelrd

## Cyclic Reduction: Parallel algorithm

## Basic linear algebra:

Take any row, multiply by scalar, add to another row => Solution unchanged

| B1 | C1 |  |  |  |  |  | A1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A2 | B2 | C2 |  |  |  |  |  |
|  | A3 | B3 | C3 |  |  |  |  |
|  |  | A4 | B4 | C4 |  |  |  |
|  |  |  | A5 | B5 | C5 |  |  |
|  |  |  |  | A6 | B6 | C6 |  |
|  |  |  |  |  | A7 | B7 | C7 |
| C8 |  |  |  |  |  | A8 | B8 |


| X 1 |
| :--- |
| X 2 |
| X 3 |
| X 4 |
| X 5 |
| X 6 |
| X 7 |
| X 8 |


| R 1 |
| :--- | :--- |
| R 2 |
| R 3 |
| R 4 |
| R 5 |
| R 6 |
| R 7 |
| R 8 |

## Scale Equations 3 and 5



## Add scaled Equations 3 \& 5 to 4

nVIDIA.

+\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline B 1 \& C 1 \& \& \& \& \& \& A 1 <br>
\hline A 2 \& B 2 \& C 2 \& \& \& \& \& <br>
+ \& \& $\mathrm{A} 3^{\prime}$ \& -A 4 \& C 3 \& \& \& <br>
\hline

$+$

<br>
\hline \& \& A 4 \& B 4 \& C 4 \& \& \& <br>
\hline \& \& \& $\mathrm{~A} 5^{\prime}$ \& -C 4 \& $\mathrm{C} 5^{\prime}$ \& \& <br>
\hline C 8 \& \& \& \& \& \& A 8 \& B 8 <br>
\hline
\end{tabular}

| X 1 |  |
| :--- | :--- |
| X 2 |  |
| X 3 |  |
| X 4 |  |
| X 5 |  |
| X 6 |  |
| X 7 |  |
| X 1 |  |
| R 3 |  |
|  | R 3 |
| R 5 |  |
| R 6 |  |
| R 7 |  |
| R 8 |  |

## Zeroes entries 4,3 and 4,5

| B1 | C1 |  |  |  |  |  | A1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A2 | B2 | C2 |  |  |  |  |  |
|  | $\mathrm{A}^{\prime}$ | -A 4 | $\mathrm{C}^{\prime}$ |  |  |  |  |
|  | $\mathrm{A}^{\prime}$ |  | $\mathrm{B}^{\prime}$ |  | $\mathrm{C}^{\prime}$ |  |  |
|  |  |  | A5' | -C 4 | $\mathrm{C}^{\prime}$ |  |  |
|  |  |  |  | A6 | B6 | C6 |  |
|  |  |  |  |  | A7 | B7 | C7 |
| C8 |  |  |  |  |  | A8 | B8 |


| X 1 |
| :--- |
| X 2 |
| X 3 |
| X 4 |
| X 5 |
| X 6 |
| X 7 |
| X 8 |$=$| R 1 |
| :--- |
| R 2 |
| R 3 |
| R 4 |
| R 5 |
| R 6 |
| R 7 |
| R 8 |

## Repeat operation for all equations

| B1' |  | C2' |  |  |  | A8' |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | B2' |  | C3' |  |  |  | A1' |
| A2' |  | B3' |  | C4' |  |  |  |
|  | A3' |  | B4' |  | C5' |  |  |
|  |  | A4' |  | B5' |  | C6' |  |
|  |  |  | A5' |  | B6' |  | C7' |
| C8' |  |  |  | A6' |  | B7' |  |
|  | C1' |  |  |  | A7' |  | B8' |


| X1 | R1' |
| :---: | :---: |
| X2 | R2' |
| X3 | R3' |
| X4 | R4' |
| X5 | R5' |
| X6 | R6' |
| X7 | R7' |
| X8 | R8' |

## Permute - 2 independent blocks

| Odd - | B1' | C2' |  | A8' |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A2' | B3' | C4' |  |  |  |  |  |
|  |  | A4' | B5' | C6' |  |  |  |  |
|  | C8' |  | A6' | B7' |  |  |  |  |
| Even - |  |  |  |  | B2' | C3' |  | A1' |
|  |  |  |  |  | A3' | B4' | C5' |  |
|  |  |  |  |  |  | A5' | B6' | C7' |
|  |  |  |  |  | C1' |  | A7' | B8' |


| X1 | R1' |
| :---: | :---: |
| X3 | R3' |
| X5 | R5' |
| X7 | R7' |
| X2 | R3' |
| X4 | R4' |
| X6 | R6' |
| X8 | R8' |

## Cyclic Reduction Ingredients

- Apply this transformation (pivot + permute)
- Split ( $\mathrm{n} \times \mathrm{n}$ ) into 2 independent ( $\mathrm{n} / 2 \times \mathrm{n} / \mathbf{2}$ )
- Proceed recursively
- Two approaches:
- Recursively reduce both submatrices until $\mathrm{n} 1 \times 1$ matrices obtained. Solve resulting diagonal matrix.
- Recursively reduce odd submatrix until single $1 \times 1$ system. Solve system. Reverse process via back-substitution.


## Cyclic Reduction (CR)

Z \#hreadywhinang


## Parallel Cyclic Reduction (PCR)

## 4 threads working


$\log _{2}(8)=3$ steps

## Work vs. Step Efficiency

- CR does $O(n)$ work, requires $2 \log (\mathrm{n})$ steps
- PCR does O(n log $n$ ) work, requires $\log (n)$ steps
- Smallest granularity of work is 32 threads: performing fewer than 32 math ops = same cost as 32 math ops
- Here's an idea:

Save work when > 32 threads active (CR)

- Save steps when < 32 threads active (PCR)


## Hybrid Algorithm



Switch to PCR Switch back to CR

System size reduced at the beginning No idle processors
Fewer algorithmic steps
Even more beneficial because of: bank conflicts control overhead

## PCR vs Hybrid

- Make tradeoffs between the computation, memory access, and control
- The earlier you switch from CR to PCR
- The fewer bank conflicts, the fewer algorithmic steps
- But more work



## Hybrid Solver - Optimal cross-over



## Results: Tridiagonal Linear Solver

Time (milliseconds)

Solve 512 systems of 512 unknowns


PCI-E: CPU-GPU data transfer
MT GE: multi-threaded CPU Gaussian Elimination
GEP: CPU Gaussian Elimination with pivoting (from LAPACK)
From Zhang et al., "Fast Tridiagonal Solvers on GPU." PPoPP 2010.

- Linear PDE => Linear solver (e.g. Poisson Equation)
- 2 basic approaches: Iterative vs. Direct
- Parallel iterative solver (Red Black Gauss Seidel)
- Design update procedure so multiple terms can be updated in parallel
- Parallel direct solver (Cyclic Reduction)
- Exploit structure of matrix to solve using parallel operations
- 'General purpose' solvers largely mythical. Most people use special purpose solvers $=>$ Lots of good research potential mining this field

