

Solving PDEs with CUDA

Jonathan Cohen jocohen@nvidia.com

NVIDIA Research

PDEs (Partial Differential Equations)

- Big topic
- Some common strategies
- Focus on one type of PDE in this talk
- Poisson Equation
 - Linear equation => Linear solvers
 - Parallel approaches for solving resulting linear systems

Poisson Equation

Classic Poisson Equation:

 $^{2}p = rhs$ (p, rhs scalar fields)

(Laplacian of p = sum of second derivatives)

$$\partial^2 p/\partial x^2 + \partial^2 p/\partial y^2 + \partial^2 p/\partial z^2 = \text{rhs}$$

$$\partial^2 p / \partial x^2 \approx \underline{\partial (p + \Delta x) / \partial x - \partial p / \partial x}$$

$$\Delta x$$

To compute Laplacian at P[4]:

1st Derivatives on both sides:

$$\partial p/\partial x = P[4] - P[3]$$
 $\partial (p+\Delta)/\partial x = P[5] - P[4]$ Δx

Derivative of 1st Derivatives:

$$\frac{P[5] - P[4] - P[4] - P[3]}{\Delta x} \qquad 1/\Delta x^2 (P[3] - 2P[4] + P[5])$$

Poisson Matrix

Poisson Equation is a sparse linear system

-2	1						1	
1	-2	1						
	1	-2	1					
		1	-2	1				
			1	-2	1			
				1	-2	1		
					1	-2	1	
1						1	-2	

P[0] P[1] P[2] P[3] P[4] P[5] P[6] P[7]

 $= \Delta x^2 RHS$

Approach 1: Iterative Solver

Solve M p = r, where M and r are known Error is easy to estimate: E = M p' - r

Basic iterative scheme:

Start with a guess for p, call it p'
Until | M p' - r | < tolerance
p' <= Update(p', M, r)
Return p'

Serial Gauss-Seidel Relaxation

Loop until convergence:

For each equation j = 1 to n Solve for P[j]

E.g. equation for P[1]:

P[0] - 2P[1] + P[2] = h*h*RHS[1]

Rearrange terms:

P[1] = P[0] + P[2] - h*h*RHS[1]

2

One Pass of Serial Algorithm

Red-Black Gauss-Seidel Relaxation

- Can choose any order in which to update equations
 - Convergence rate may change, but convergence still guaranteed
- "Red-black" ordering:

- Red (odd) equations independent of each other
- Black (even) equations independent of each other

Parallel Gauss-Seidel Relaxation

Loop n times (until convergence)

For each even equation j = 0 to n-1

Solve for P[j]

For each odd equation j = 1 to n

Solve for P[j]

For loops are parallel – perfect for CUDA kernel

One Pass of Parallel Algorithm

CUDA Pseudo-code


```
global void RedBlackGaussSeidel(
 Grid P, Grid RHS, float h, int red black)
 int i = blockIdx.x*blockDim.x + threadIdx.x;
 int j = blockIdx.y*blockDim.y + threadIdx.y;
 i*=2;
 if (j%2 != red black) i++;
 int idx = j*RHS.jstride + i*RHS.istride;
 P.buf[idx] = 1.0/6.0*(-h*h*R.buf[idx] +
      P.buf[idx + P.istride] + P.buf[idx - P.istride] +
      P.buf[idx + P.jstride] + P.buf[idx - P.jstride]);
// on host:
for (int i=0; i < 100; i++) {
 RedBlackGaussSeidel<<<Dg, Db>>>(P, RHS, h, 0);
 RedBlackGaussSeidel<<<Dg, Db>>>(P, RHS, h, 1);
```

Optimizing the Poisson Solver

- Red-Black scheme is bad for coalescing
 - Read every other grid cell => half memory bandwidth
 - Lots of reuse between adjacent threads (blue and green)

- Texture cache (Fermi L1 cache) improves performance by 2x
 - Lots of immediate reuse, very small working set
 - In my tests, (barely) beats software-managed shared memory

Generalizing to non-grids

- What about discretization over non-Cartesian grids?
 - Finite element, finite volume, etc.
- Need discrete version of differential operator (Laplacian) to this geometry

Works out to same thing:

$$Lp = r$$

where L is matrix of Laplacian discretizations

Graph Coloring

- Need partition into non-adjacent sets
 - Classic 'graph coloring' problem
 - Red-black is special case, where 2 colors suffice
 - Too many colors => not enough parallelism within each color
 - Not enough colors => hard coloring problem

Until convergence:

Update green terms in parallel Update orange terms in parallel Update blue terms in parallel

Back to the Poisson Matrix...

1D Poisson Matrix has particular sparse structure: 3 non-zeros per row, around the diagonal

-2	1						1	P[0]
1	-2	1						P[1]
	1	-2	1					P[2]
		1	-2	1				P[3]
			1	-2	1			P[4]
				1	-2	1		P[5]
					1	-2	1	P[6]
1						1	-2	P[7]

 $= \Delta x^2 RHS$

Approach 2: Direct Solver

- Solve the matrix equation directly
- Exploit sparsity pattern all zeroes except diagonal,1 above, 1 below = "tridiagonal" matrix
- Many applications for tridiagonal matrices
 - Vertical diffusion (adjacent columns do not interact)
 - ADI methods (e.g. separate 2D blur x blur, y blur)
 - Linear solvers (multigrid, preconditioners, etc.)
- Typically many small tridiagonal systems => per-CTA algorithm

What is a tridiagonal system?

$$\begin{pmatrix} b_1 & c_1 & & & & \\ a_2 & b_2 & c_2 & & & \\ & a_3 & b_3 & c_3 & & \\ & & \ddots & \ddots & \ddots & \\ & & & a_n & b_n \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} d_1 \\ d_2 \\ d_3 \\ \vdots \\ \vdots \\ d_n \end{pmatrix}$$

A Classic Sequential Algorithm

Gaussian elimination in tridiagonal case (Thomas algorithm)

$$\begin{pmatrix} 1 & c'_1 & & & \\ 0 & 1 & c'_2 & & \\ & 0 & 1 & c'_3 & \\ & 0 & 1 & c'_4 \\ & & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} d'_1 \\ d'_2 \\ d'_3 \\ d'_4 \\ d'_5 \end{pmatrix}$$

Płhase 2: Barokaverd Birbistattikojo n

Cyclic Reduction: Parallel algorithm

Basic linear algebra:

Take any row, multiply by scalar, add to another row => Solution unchanged

B1	C1						A1	X1		R1
A2	B2	C2						X2		R2
	A3	ВЗ	C3					Х3		R3
		A4	B4	C4				X4		R4
			A5	B5	C5			X5	=	R5
				A6	В6	C6		Х6	I	R6
					A7	B7	C7	X7	>	R7
C8						A8	B8	X8		R8

Scale Equations 3 and 5

	B1	C1						A1	X1		R1
	A2	B2	C2						X2		R2
-A4/B3 *		А3	В3	C3					Х3		R3
			A4	B4	C4				X4		R4
-C4/B5 *				A5	B5	C 5			X5	=	R5
					A6	В6	C6		X6		R6
						A7	B7	C 7	X7	>	R7
	C8						A8	B8	X8		R8

Add scaled Equations 3 & 5 to 4

	B1	C1						A1	X1		R1
	A2	B2	C2						X2		R2
+		A3'	-A4	C3'					Х3		R3
			A4	B4	C4				X4		R4
+				A5'	-C4	C5'			X5	=	R5
					A6	B6	C6		X6		R6
						A7	B7	C 7	X7	<u> </u>	R7
	C8						A8	B8	X8		R8

R1	
R2	
R3	
R4	
R5	
R6	
R7	
R8	

Zeroes entries 4,3 and 4,5

B1	C1						A1	X1		R1
A2	B2	C2						X2		R2
	A3'	-A4	C3'					Х3		R3
	A3'		B4'		C5'	7		X4		R4'
			A5'	-C4	C5'			X5	=	R5
				A6	В6	C6		X6		R6
					A7	B7	C7	X7	> -	R7
C8						A8	B8	X8		R8

Repeat operation for all equations

B1'		C2'				A8'		X1		R1'
	B2'		C3'				A1'	X2		R2'
A2'		B3'		C4'				Х3		R3'
	A3'		B4'		C5'			X4		R4'
		A4'	//	B5'		C6'		X5	=	R5'
			A5'		B6'		C7'	X6		R6'
C8'				A6'		B7'		X7		R7'
	C1'				A7'		B8'	X8		R8'

Permute – 2 independent blocks

	B1'	C2'		A8'					X1		R1'
Odd -	A2'	B3'	C4'						Х3		R3'
		A4'	B5'	C6'					X5		R5'
	C8'		A6'	B7'					X7		R7'
Even-					B2'	C3'		A1'	X2	=	R3'
					A3'	B4'	C5'		X4	1	R4'
						A5'	B6'	C7'	X6	>	R6'
					C1'		A7'	B8'	X8		R8'

Cyclic Reduction Ingredients

- Apply this transformation (pivot + permute)
- Split (n x n) into 2 independent (n/2 x n/2)
- Proceed recursively
- Two approaches:
 - Recursively reduce both submatrices until n 1x1 matrices obtained. Solve resulting diagonal matrix.
 - Recursively reduce odd submatrix until single 1x1 system. Solve system. Reverse process via back-substitution.

Cyclic Reduction (CR)

$$2*log_2(8)-1 = 2*3 -1 = 5 steps$$

Parallel Cyclic Reduction (PCR)

4 threads working

 $log_2(8) = 3 steps$

Work vs. Step Efficiency

- CR does O(n) work, requires 2 log(n) steps
- PCR does O(n log n) work, requires log(n) steps
- Smallest granularity of work is 32 threads:
 performing fewer than 32 math ops = same cost as
 32 math ops
- Here's an idea:
 - Save work when > 32 threads active (CR)
 - Save steps when < 32 threads active (PCR)</p>

Hybrid Algorithm

Switch to PCR Switch back to CR

System size reduced at the beginning No idle processors Fewer algorithmic steps

Even more beneficial because of: bank conflicts control overhead

PCR vs Hybrid

- Make tradeoffs between the computation, memory access, and control
 - The earlier you switch from CR to PCR
 - The fewer bank conflicts, the fewer algorithmic steps
 - But more work

Hybrid Solver – Optimal cross-over

Optimal performance of hybrid solver Solving 512 systems of 512 unknowns

Results: Tridiagonal Linear Solver

PCI-E: CPU-GPU data transfer

MT GE: multi-threaded CPU Gaussian Elimination

GEP: CPU Gaussian Elimination with pivoting (from LAPACK)

From Zhang et al., "Fast Tridiagonal Solvers on GPU." PPoPP 2010.

Summary

- Linear PDE => Linear solver (e.g. Poisson Equation)
- 2 basic approaches: Iterative vs. Direct
- Parallel iterative solver (Red Black Gauss Seidel)
 - Design update procedure so multiple terms can be updated in parallel
- Parallel direct solver (Cyclic Reduction)
 - Exploit structure of matrix to solve using parallel operations
- General purpose' solvers largely mythical. Most people use special purpose solvers => Lots of good research potential mining this field