
CS 193G

Lecture 5: Parallel Patterns I

Getting out of the trenches

So far, we’ve concerned ourselves with low-level

details of kernel programming

Mapping of threads to work

Launch grid configuration

__shared__ memory management

Resource allocation

Lots of moving parts

Hard to see the forest for the trees

CUDA Madlibs

__global__ void foo(...)

{

extern __shared__ smem[];

int i = ???

// now what???

}

...

int B = ???

int N = ???

int S = ???

foo<<<B,N,S>>>();

Parallel Patterns

Think at a higher level than individual CUDA kernels

Specify what to compute, not how to compute it

Let programmer worry about algorithm

Defer pattern implementation to someone else

Common Parallel Computing

Scenarios

Many parallel threads need to generate a single result

 Reduce

Many parallel threads need to partition data

 Split

Many parallel threads produce variable output / thread

 Compact / Expand

Primordial CUDA Pattern: Blocking

Partition data to operate in well-sized blocks

Small enough to be staged in shared memory

Assign each data partition to a thread block

No different from cache blocking!

Provides several performance benefits

Have enough blocks to keep processors busy

Working in shared memory cuts memory latency

dramatically

Likely to have coherent access patterns on load/store to

shared memory

Primordial CUDA Pattern: Blocking

Partition data into subsets that fit into shared

memory

Primordial CUDA Pattern: Blocking

Handle each data subset with one thread block

Primordial CUDA Pattern: Blocking

Load the subset from global memory to shared

memory, using multiple threads to exploit memory-

level parallelism

Primordial CUDA Pattern: Blocking

Perform the computation on the subset from shared

memory

Primordial CUDA Pattern: Blocking

Copy the result from shared memory back to global

memory

Primordial CUDA Pattern: Blocking

All CUDA kernels are built this way

Blocking may not matter for a particular problem, but

you’re still forced to think about it

Not all kernels require __shared__ memory

All kernels do require registers

All of the parallel patterns we’ll discuss have CUDA

implementations that exploit blocking in some

fashion

Reduction

Reduce vector to a single value

Via an associative operator (+, *, min/max, AND/OR, …)

CPU: sequential implementation

for(int i = 0, i < n, ++i) ...

GPU: “tree”-based implementation

4 7 5 9

11 14

25

3 1 7 0 4 1 6 3

Serial Reduction

// reduction via serial iteration

float sum(float *data, int n)

{

float result = 0;

for(int i = 0; i < n; ++i)

{

result += data[i];

}

return result;

}

Parallel Reduction – Interleaved

Values (in shared memory)

Values

Values

Values

2011072-3-253-20-18110

0 1 2 3 4 5 6 7

22111179-3-558-2-2-17111

0 1 2 3

22111379-3458-26-17118

0 1

22111379-31758-26-17124

0

22111379-31758-26-17141Values

Thread

IDs

Step 1

Stride 1

Step 2

Stride 2

Step 3

Stride 4

Step 4

Stride 8

Thread

IDs

Thread

IDs

Thread

IDs

Parallel Reduction – Contiguous

2011072-3-253-20-18110Values (in shared memory)

0 1 2 3 4 5 6 7

2011072-3-27390610-28Values

0 1 2 3

2011072-3-27390131378Values

0 1

2011072-3-2739013132021Values

0

2011072-3-2739013132041Values

Thread

IDs
Step 1

Stride 8

Step 2

Stride 4

Step 3

Stride 2

Step 4

Stride 1

Thread

IDs

Thread

IDs

Thread

IDs

CUDA Reduction
__global__ void block_sum(float *input,

float *results,

size_t n)

{

extern __shared__ float sdata[];

int i = ..., int tx = threadIdx.x;

// load input into __shared__ memory

float x = 0;

if(i < n)

x = input[i];

sdata[tx] = x;

__syncthreads();

CUDA Reduction
// block-wide reduction in __shared__ mem

for(int offset = blockDim.x / 2;

offset > 0;

offset >>= 1)

{

if(tx < offset)

{

// add a partial sum upstream to our own

sdata[tx] += sdata[tx + offset];

}

__syncthreads();

}

CUDA Reduction
// finally, thread 0 writes the result

if(threadIdx.x == 0)

{

// note that the result is per-block

// not per-thread

results[blockIdx.x] = sdata[0];

}

}

An Aside

// is this barrier divergent?

for(int offset = blockDim.x / 2;

offset > 0;

offset >>= 1)

{

...

__syncthreads();

}

An Aside

// what about this one?

__global__ void do_i_halt(int *input)

{

int i = ...

if(input[i])

{

...

__syncthreads();

}

}

// a divergent barrier

// hangs the machine

CUDA Reduction

// global sum via per-block reductions

float sum(float *d_input, size_t n)

{

size_t block_size = ..., num_blocks = ...;

// allocate per-block partial sums

// plus a final total sum

float *d_sums = 0;

cudaMalloc((void**)&d_sums,

sizeof(float) * (num_blocks + 1));

...

CUDA Reduction
// reduce per-block partial sums

int smem_sz = block_size*sizeof(float);

block_sum<<<num_blocks,block_size,smem_sz>>>

(d_input, d_sums, n);

// reduce partial sums to a total sum

block_sum<<<1,block_size,smem_sz>>>

d_sums, d_sums + num_blocks, num_blocks);

// copy result to host

float result = 0;

cudaMemcpy(&result, d_sums+num_blocks, ...);

return result;

Caveat Reductor

What happens if there are too many partial sums to
fit into __shared__ memory in the second stage?

What happens if the temporary storage is too big?

Give each thread more work in the first stage

Sum is associative & commutative

Order doesn’t matter to the result

We can schedule the sum any way we want

 serial accumulation before block-wide reduction

Exercise left to the hacker

Parallel Reduction Complexity

Log(N) parallel steps, each step S does N/2S

independent ops

Step Complexity is O(log N)

For N=2D, performs S[1..D]2
D-S = N-1 operations

Work Complexity is O(N) – It is work-efficient

i.e. does not perform more operations than a sequential

algorithm

With P threads physically in parallel (P processors),

time complexity is O(N/P + log N)

Compare to O(N) for sequential reduction

FTFFTFFT

FFFFFTTT

36140713

31471603

Flag

Payload

Split Operation

Given:array of true and false elements (and payloads)

Return an array with all true elements at the beginning

Examples: sorting, building trees

Variable Output Per Thread:

Compact

Remove null elements

Example: collision detection

3 7 4 1 3

3 0 7 0 4 1 0 3

Variable Output Per Thread:

General Case

Reserve Variable Storage Per Thread

Example: binning

A

B

C D

E

F

G

2 1 0 3 2

H

Split, Compact, Expand

Each thread must answer a simple question:

“Where do I write my output?”

The answer depends on what other threads write!

Scan provides an efficient parallel answer

Scan (a.k.a. Parallel Prefix Sum)

Given an array A = [a0, a1, …, an-1]

and a binary associative operator with identity I,

scan(A) = [I, a0, (a0 a1), …, (a0 a1 … an-2)]

Prefix sum: if is addition, then scan on the series

returns the series

3 1 7 0 4 1 6 3

0 3 4 11 11 15 16 22

Applications of Scan

Scan is a simple and useful parallel building block

for many parallel algorithms:

Fascinating, since scan is unnecessary in sequential

computing!

Radix sort

Quicksort (seg. scan)

String comparison

Lexical analysis

Stream compaction

Run-length encoding

Polynomial evaluation

Solving recurrences

Tree operations

Histograms

Allocation

Etc.

Serial Scan

int input[8] = {3, 1, 7, 0, 4, 1, 6, 3};

int result[8];

int running_sum = 0;

for(int i = 0; i < 8; ++i)

{

result[i] = running_sum;

running_sum += input[i];

}

// result = {0, 3, 4, 11, 11, 15, 16, 22}

3 1 7 0 4 1 6 3

A Scan Algorithm – Preview

Assume array is already in shared memory

See Harris, M., S. Sengupta, and J.D. Owens. “Parallel Prefix Sum (Scan) in CUDA”, GPU Gems 3

A Scan Algorithm – Preview

Iteration 0, n-1 threads

Iterate log(n) times. Each thread adds value stride elements away to its own value

Each corresponds

to a single thread.

3 1 7 0 4 1 6 3

3 4 8 7 4 5 7 9

A Scan Algorithm – Preview

Iterate log(n) times. Each thread adds value offset elements away to its own value

Each corresponds

to a single thread.

3 4 11 11 12 12 11 14

Iteration 1, n-2 threads

3 1 7 0 4 1 6 3

3 4 8 7 4 5 7 9

A Scan Algorithm – Preview

Iterate log(n) times. Each thread adds value offset elements away to its own value.

Note that this algorithm operates in-place: no need for double buffering

Each corresponds

to a single thread.

3 4 11 11 15 16 22 25

Iteration i, n-2i threads

3 4 11 11 12 12 11 14

3 1 7 0 4 1 6 3

3 4 8 7 4 5 7 9

A Scan Algorithm – Preview

We have an inclusive scan result

3 4 11 11 15 16 22 25

A Scan Algorithm – Preview

For an exclusive scan, right-shift through
__shared__ memory

Note that the unused final element is also the sum

of the entire array

Often called the “carry”

Scan & reduce in one pass

3 4 11 11 15 16 22 25

0 3 4 11 11 15 16 220

?

CUDA Block-wise Inclusive Scan

__global__ void inclusive_scan(int *data)

{

extern __shared__ int sdata[];

unsigned int i = ...

// load input into __shared__ memory

int sum = input[i];

sdata[threadIdx.x] = sum;

__syncthreads();

...

CUDA Block-wise Inclusive Scan
for(int o = 1; o < blockDim.x; o <<= 1)

{

if(threadIdx.x >= o)

sum += sdata[threadIdx.x - o];

// wait on reads

__syncthreads();

// write my partial sum

sdata[threadIdx.x] = sum;

// wait on writes

__syncthreads();

}

CUDA Block-wise Inclusive Scan

// we're done!

// each thread writes out its result

result[i] = sdata[threadIdx.x];

}

Results are Local to Each Block

Block 0

Input:

5 5 4 4 5 4 0 0 4 2 5 5 1 3 1 5

Result:

5 10 14 18 23 27 27 27 31 33 38 43 44 47 48 53

Block 1

Input:

1 2 3 0 3 0 2 3 4 4 3 2 2 5 5 0

Result:

1 3 6 6 9 9 11 14 18 22 25 27 29 34 39 39

Results are Local to Each Block

Need to propagate results from each block to all

subsequent blocks

2-phase scan

1. Per-block scan & reduce

2. Scan per-block sums

Final update propagates phase 2 data and

transforms to exclusive scan result

Details in MP3

Summing Up

Patterns like reduce, split, compact, scan, and

others let us reason about data parallel problems

abstractly

Higher level patterns are built from more

fundamental patterns

Scan in particular is fundamental to parallel

processing, but unnecessary in a serial world

Get others to implement these for you!

 but not until after MP3

