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Lecture 5: Parallel Patterns I



Getting out of the trenches

So far, we’ve concerned ourselves with low-level 

details of kernel programming

Mapping of threads to work

Launch grid configuration

__shared__ memory management

Resource allocation

Lots of moving parts

Hard to see the forest for the trees



CUDA Madlibs

__global__ void foo(...)

{

extern __shared__ smem[];

int i = ???

// now what???

}

...

int B = ???

int N = ???

int S = ???

foo<<<B,N,S>>>();



Parallel Patterns

Think at a higher level than individual CUDA kernels

Specify what to compute, not how to compute it

Let programmer worry about algorithm

Defer pattern implementation to someone else



Common Parallel Computing 

Scenarios 

Many parallel threads need to generate a single result 

 Reduce

Many parallel threads need to partition data 

 Split

Many parallel threads produce variable output / thread

 Compact / Expand



Primordial CUDA Pattern: Blocking 

Partition data to operate in well-sized blocks

Small enough to be staged in shared memory

Assign each data partition to a thread block

No different from cache blocking!

Provides several performance benefits

Have enough blocks to keep processors busy

Working in shared memory cuts memory latency 

dramatically

Likely to have coherent access patterns on load/store to 

shared memory



Primordial CUDA Pattern: Blocking

Partition data into subsets that fit into shared 

memory



Primordial CUDA Pattern: Blocking

Handle each data subset with one thread block



Primordial CUDA Pattern: Blocking

Load the subset from global memory to shared 

memory, using multiple threads to exploit memory-

level parallelism



Primordial CUDA Pattern: Blocking

Perform the computation on the subset from shared 

memory



Primordial CUDA Pattern: Blocking

Copy the result from shared memory back to global 

memory



Primordial CUDA Pattern: Blocking 

All CUDA kernels are built this way

Blocking may not matter for a particular problem, but 

you’re still forced to think about it

Not all kernels require __shared__ memory

All kernels do require registers

All of the parallel patterns we’ll discuss have CUDA 

implementations that exploit blocking in some 

fashion



Reduction

Reduce vector to a single value 

Via an associative operator (+, *, min/max, AND/OR, …)

CPU: sequential implementation

for(int i = 0, i < n, ++i) ...

GPU: “tree”-based implementation
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Serial Reduction

// reduction via serial iteration

float sum(float *data, int n)

{

float result = 0;

for(int i = 0; i < n; ++i)

{

result += data[i];

}

return result;

}



Parallel Reduction – Interleaved
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Parallel Reduction – Contiguous
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CUDA Reduction
__global__ void block_sum(float *input,

float *results,

size_t n)

{

extern __shared__ float sdata[];

int i = ..., int tx = threadIdx.x;

// load input into __shared__ memory

float x = 0;

if(i < n)

x = input[i];

sdata[tx] = x;

__syncthreads();



CUDA Reduction
// block-wide reduction in __shared__ mem

for(int offset = blockDim.x / 2;

offset > 0;

offset >>= 1)

{

if(tx < offset)

{

// add a partial sum upstream to our own

sdata[tx] += sdata[tx + offset];

}

__syncthreads();

}



CUDA Reduction
// finally, thread 0 writes the result

if(threadIdx.x == 0)

{

// note that the result is per-block

// not per-thread

results[blockIdx.x] = sdata[0];

}

}



An Aside

// is this barrier divergent?

for(int offset = blockDim.x / 2;

offset > 0;

offset >>= 1)

{

...

__syncthreads();

}



An Aside

// what about this one?

__global__ void do_i_halt(int *input)

{

int i = ...

if(input[i])

{

...

__syncthreads();

}

}

// a divergent barrier

// hangs the machine



CUDA Reduction

// global sum via per-block reductions

float sum(float *d_input, size_t n)

{

size_t block_size = ..., num_blocks = ...;

// allocate per-block partial sums

// plus a final total sum

float *d_sums = 0;

cudaMalloc((void**)&d_sums,

sizeof(float) * (num_blocks + 1));

...



CUDA Reduction
// reduce per-block partial sums

int smem_sz = block_size*sizeof(float);

block_sum<<<num_blocks,block_size,smem_sz>>>

(d_input, d_sums, n);

// reduce partial sums to a total sum

block_sum<<<1,block_size,smem_sz>>>

d_sums, d_sums + num_blocks, num_blocks);

// copy result to host

float result = 0;

cudaMemcpy(&result, d_sums+num_blocks, ...);

return result;



Caveat Reductor

What happens if there are too many partial sums to 
fit into __shared__ memory in the second stage?

What happens if the temporary storage is too big?

Give each thread more work in the first stage

Sum is associative & commutative

Order doesn’t matter to the result

We can schedule the sum any way we want

 serial accumulation before block-wide reduction

Exercise left to the hacker



Parallel Reduction Complexity

Log(N) parallel steps, each step S does N/2S

independent ops

Step Complexity is O(log N)

For N=2D, performs S[1..D]2
D-S = N-1 operations 

Work Complexity is O(N) – It is work-efficient

i.e. does not perform more operations than a sequential 

algorithm

With P threads physically in parallel (P processors), 

time complexity is O(N/P + log N) 

Compare to O(N) for sequential reduction



FTFFTFFT

FFFFFTTT

36140713

31471603

Flag

Payload

Split Operation

Given:array of true and false elements (and payloads)

Return an array with all true elements at the beginning

Examples: sorting, building trees



Variable Output Per Thread: 

Compact

Remove null elements

Example: collision detection

3 7 4 1 3

3 0 7 0 4 1 0 3



Variable Output Per Thread: 

General Case

Reserve Variable Storage Per Thread

Example: binning
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Split, Compact, Expand

Each thread must answer a simple question:

“Where do I write my output?”

The answer depends on what other threads write!

Scan provides an efficient parallel answer



Scan (a.k.a. Parallel Prefix Sum)

Given an array A = [a0, a1, …, an-1] 

and a binary associative operator  with identity I, 

scan(A) = [I, a0, (a0  a1), …, (a0  a1  …  an-2)]

Prefix sum:  if  is addition, then scan on the series

returns the series 

3 1 7 0 4 1 6 3

0 3 4 11 11 15 16 22



Applications of Scan

Scan is a simple and useful parallel building block 

for many parallel algorithms:

Fascinating, since scan is unnecessary in sequential 

computing!

Radix sort

Quicksort (seg. scan)

String comparison

Lexical analysis

Stream compaction

Run-length encoding

Polynomial evaluation

Solving recurrences

Tree operations

Histograms

Allocation

Etc.



Serial Scan

int input[8] = {3, 1, 7, 0, 4, 1, 6, 3}; 

int result[8];

int running_sum = 0;

for(int i = 0; i < 8; ++i)

{

result[i] = running_sum;

running_sum += input[i];

}

// result = {0, 3, 4, 11, 11, 15, 16, 22}



3 1 7 0 4 1 6 3

A Scan Algorithm – Preview

Assume array is already in shared memory

See Harris, M., S. Sengupta, and J.D. Owens. “Parallel Prefix Sum (Scan) in CUDA”, GPU Gems 3



A Scan Algorithm – Preview 

Iteration 0, n-1 threads

Iterate log(n) times. Each thread adds value stride elements away to its own value

Each       corresponds 

to a single thread.

3 1 7 0 4 1 6 3

3 4 8 7 4 5 7 9



A Scan Algorithm – Preview 

Iterate log(n) times. Each thread adds value offset elements away to its own value

Each       corresponds 

to a single thread.

3 4 11 11 12 12 11 14

Iteration 1, n-2 threads
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A Scan Algorithm – Preview 

Iterate log(n) times. Each thread adds value offset elements away to its own value.

Note that this algorithm operates in-place: no need for double buffering

Each       corresponds 

to a single thread.

3 4 11 11 15 16 22 25

Iteration i, n-2i threads

3 4 11 11 12 12 11 14

3 1 7 0 4 1 6 3

3 4 8 7 4 5 7 9



A Scan Algorithm – Preview 

We have an inclusive scan result

3 4 11 11 15 16 22 25



A Scan Algorithm – Preview 

For an exclusive scan, right-shift through 
__shared__ memory

Note that the unused final element is also the sum 

of the entire array

Often called the “carry”

Scan & reduce in one pass

3 4 11 11 15 16 22 25

0 3 4 11 11 15 16 220

?



CUDA Block-wise Inclusive Scan

__global__ void inclusive_scan(int *data)

{

extern __shared__ int sdata[];

unsigned int i = ...

// load input into __shared__ memory

int sum = input[i];

sdata[threadIdx.x] = sum;

__syncthreads();

...



CUDA Block-wise Inclusive Scan
for(int o = 1; o < blockDim.x; o <<= 1)

{

if(threadIdx.x >= o)

sum += sdata[threadIdx.x - o];

// wait on reads

__syncthreads();

// write my partial sum

sdata[threadIdx.x] = sum;

// wait on writes

__syncthreads();

}



CUDA Block-wise Inclusive Scan

// we're done!

// each thread writes out its result

result[i] = sdata[threadIdx.x];

}



Results are Local to Each Block

Block 0

Input:

5  5  4  4  5  4  0  0  4  2  5  5  1  3  1  5

Result:

5 10 14 18 23 27 27 27 31 33 38 43 44 47 48 53

Block 1

Input:

1  2  3  0  3  0  2  3  4  4  3  2  2  5  5  0

Result:

1  3  6  6  9  9 11 14 18 22 25 27 29 34 39 39



Results are Local to Each Block

Need to propagate results from each block to all 

subsequent blocks

2-phase scan

1. Per-block scan & reduce

2. Scan per-block sums

Final update propagates phase 2 data and 

transforms to exclusive scan result

Details in MP3



Summing Up

Patterns like reduce, split, compact, scan, and 

others let us reason about data parallel problems 

abstractly

Higher level patterns are built from more 

fundamental patterns

Scan in particular is fundamental to parallel 

processing, but unnecessary in a serial world

Get others to implement these for you!

 but not until after MP3


