Tutorial on Curve Fitting for GIS

Wm Randolph Franklin
Rensselaer Polytechnic Institute
Troy, NY, 12180 USA

Phone: +1 (518) 276-6077, Fax: +1 (518) 276-6261
Internet: wrf@ecse.rpi.edu

Abstract

This paper is an introduction to curves and splines for representing car-
tographic data. We consider why a curve might be better than a chain of
points, what a good fit to the data means, the data characteristics, the de-
sired operations on the data, the possible forms of equations, and the Bézier
curve. For representing cartographic data, we recommend a parametric cu-
bic spline. We consider the B-spline, the Catmull-Rom-Overhauser spline,
producing points from the curve, and finding knots for the spline. We rec-
ommend the Douglas-Poiker line generalization algorithm for the latter.

1 Introduction

The question of data representation in science has been studied ever since
observations were quantified. The issue is important since the proper formula-
tion can make an impossible problem simple. Consider, for example the effect
on geometry of Descartes’ discovery of analytic geometry as an alternative to
synthetic geometry. In cartography, representation questions are also impor-
tant. Consider the implications of a polygon-based versus an edge-based data
structure for a map.

In this paper we consider the representation of non-straight lines in car-
tography by curves instead of as chains of points. Since curves have been
used in computer graphics and computer aided design (CAD) for a few decades,
there is a body of knowledge to draw on, which is widely available. The well-
known Bézier curves are described in most graphics and computer aided design
(CAD) texts, such as Foley, van Dam, Feiner, and Hughes[FvDFH90], Faux and
Pratt[FP81], and Choi[Cho91].

2 Why use curves?

Suppose that we need to represent non-straight line, such as a coastline or
highway entrance ramp. Although using a chain of points, implicitly connected
by straight line segments, is traditional, there are several reasons to use curves
instead.

Space Ifthe outline is smoothly curved, then representing it as a curve is much
more compact. In the extreme case, if the outline is a perfect circle with
1 cm radius, representing it as a sequence of points such that the lines
between them are always within 0.1 mm of the exact circle will require
about 20 points. If we want one part in one million accuracy, then about
2000 points are necessary. (In general, if we space a point every d along
the circle, then the error is about d?/8).

Although approximation by selecting some subset of the points seems uni-
versal, creating new points that are not in the given set is more efficient.
When approximating a circle, if points slightly outside are created, then
for any given number of points, the error is halved since the line between
the points goes inside then outside the circle by equal distances. There-
fore only 14, not 20, points are required for 0.1 mm accuracy, and only
1400, not 2000, points for one part in one million. If the points are spaced
d apart, then the error is about d?/16.

Note that the cost of storing a large database rises in steps as the database
size exceeds the available space on the current medium.

Time Data that require more space also require more time to read and process.
Many computers with fast processors are, in practice, limited by the speed
of the I/0. Many users would be better served by slower computers with
faster, larger, peripherals.

Looks A piecewise straight line may look irregular, no matter how many points
are used, unlike the original curve.

Scalability The appropriate number of points depends on the scale, but a
curve is smooth at any resolution.

This is not to say that curves should always be used, but that often they may
be a reasonable alternative to a chain of points.

3 Criteria for goodness of fit

Even when we use a curve, achieving an exact fit is often infeasible. Therefore,
what constitutes an adequate approximation? Several criteria have been used.
Since almost any method gives good results if you include enough terms, i.e.,
have enough degrees of freedom, the question is how different methods compare
when using the same number of terms.

Match N derivatives at the initial point This would seem inappropriate
since we are rarely interested in more than about two derivatives, and
we are interested in the whole interval, rather than just the initial

point. However, this is the criterion satisfied by a Taylor series, such

‘T5

assin(az):m—§+y—

Minimize the average error This looks attractive, but it could produce a
result that is mostly excellent, but contains a large narrow error spike. It
is also hard to calculate.

Minimize the maximum error (minimax) This is the basis of the Cheby-
shev polynomial approximation to a function. It is more economical than
the, more popular, Taylor approximation, i.e., a Chebyshev polynomial is
usually a better approximation than a Taylor polynonial with the same
number of degrees of freedom. However, a Chebyshev approximation can
be harder to calculate, and might produce a result that, while always
close, oscillates a lot.

Variation minimization This is a property that an approximation may, or
may not, have. It means that the output curve should remain inside the
convex hull of the input points. Also the output curve should not oscillate
more than the input sequence of points. This is a desirable property in
CAD, where the points are set by a designer merely to indicate the form of
the curve. However, since we wish to interpolate the points, and produce
a curve through them, or at least through some of them, then variation
minimization is undesirable here.

Also, when interpolating elevation data, it is desirable that a peak or pit
be inferred even though we have no data point there. Such a curve would
go outside the convex hull of the data points.

The minimax technique looks the most attractive, since the excess oscillations
do not occur in practice.

4 Characteristics of the data

We must also consider the form of the input data, since some interpolation
techniques are incompatible with some certain classes of data. The are various
possible data characteristics.

Continuous and differentiable k times (C*) A continuous function need
not be differentiable anywhere, and, if it is differentiable once, it may
not be differentiable twice, and so on. The discovery of such functions in
the nineteenth century forced calculus to be formalized better.

In industrial CAD, C? is desirable since otherwise consumers can see
surface kinks, which are artifacts of the design process. However, the real
world is not so smooth, and often not even continuous (C?).

Fractal This is the opposite extreme case. However the real world is not really
fractal either, if only because erosion is asymmetric. Mountain tops are
sharper than ocean trenches.

The proper characterization of cartographical data is quite difficult. The recent
concept of wavelets appears attractive, but a full solution is not yet in sight.

5 Desired operations

Choosing the best form of equation for a curve requires us to consider the
operations that we wish to perform on it. Here are the most frequent operations.

Produce points on the curve, to plot it. This is easy for a chain of points,
somewhat harder for a curve.

Test whether a point is on the curve, or determine to which side of the curve
it lies. This might be easier for a curve than for a long chain, since then
the point would need to be tested against every edge segment on the
chain, unless we used an auxiliary data structure, such as a uniform grid,

Franklin[FKN89, FNK*89].

Testing which side of the curve or chain a point is on is complicated in
either case. A chain of points requires some auxilary data structure, such
as trapezoids partitioning the plane. For a curve, see the paragraph on
parametric curves in section 6.1 below.

Rotate and otherwise transform of the curve. This is easy for points, while
the difficulty for a curve depends on the form of the equation.

Calculate arc length. We can’t integrate most forms of curves exactly, but,
since they are smooth, most approximation techniques work. The arc
length of a chain of points is easy, but may be slower to calculate for a
long chain than for the corresponding curve because of the number of
square-root function calls.

Calculate area. This can be determined exactly for some curves; for the oth-
ers, the above comments on approximations apply.

Intersect two curves. This is hard for both chains of points and curves. In-
tersecting two chains of points efficiently requires an auxiliary data struc-
ture, such as a uniform grid. Alternatively we might put boxes around the
chains and subdivide. Intersecting two curves generally produces poly-
nomial equations for the resulting point. One method uses resultants,
described later in section 6.2.

6 Form of equation

Once we have decided to approximate a set of points by a curve, there is the
question of the mathematical form of the equation. The perfect form would
allow the preceeding operations to be performed efficiently; unfortunately no
one equation form does them all well. The following sections describe three
choices that we must make.

6.1 Explicit, implicit, or parametric?

Explicit e.g., y = #2. Producing and testing points is easy. However the curve
must be split into single-valued segments since one function produces only
one y value for each x. If the curve is rotated, then the segments must
be redetermined. Therefore explicit curves are not used much where the
data may be rotated.

Implicit e.g., 22+y? = 1. It’s easy to test whether a point is on such a curve, and
the form of the equation stays the same if the curve is rotated, although
the coefficients change. However, it’s difficult to produce a sequence of
points along the curve. Given one point on the curve, we must determine
the tangent and curvature there. Then we step along the tangent for a
distance inversely proportional to the curvature. This gives a new point
that is probably close to, but almost certainly not on, the curve, so we must
move the point onto the curve. Various nasty things can cause errors, so
implicit curves are also uncommon.

Parametric e.g.,
2-1 2t

2+1° y=yt) = 2+1

which is a circle. t is restricted to a certain range, usually 0 to 1, although
here it’s [—o0, co]. It’s easy to produce points on the curve by evaluating «
and y at a sequence of +’s. Rotating the curve doesn’t change the form of
the equations, only the actual coefficients. However determining whether
a point is on the curve is complicated. Given (x,y), we must invert the
equation for y to find the value of ¢ that gives that y. There may be 0, 1,
or more than 1, solution, even after we restrict to solutions in the legal
interval for . If 0, then this point cannot be on the curve. If 1, then we
evaluate =(t) to see if this is the given «. If not, then this point is not on
this curve. Ifthere is more than one ¢ that gives this y, then we find every
corresponding x to see if any match. It takes only one match for the point
to be on the curve. In complicated cases, where the curve crosses itself,
there may be two values of ¢ that produce the same point.

x=x)=

In spite of the difficulty of testing points against the curve, the ease of producing
points and transforming the curve causes parametric curves to be the usual
choice.

6.2 Conversions

Some of these forms can be converted into each other. An explicit equation is
already also in the implicit and parametric form. A set of parametric polynomial
equations may be converted to the implicit form by eliminating the parameter.
However, the resulting implicit equation may have a much higher degree and
may have extraneous pieces. In addition, we want only that part of the implicit
equation that corresponds to the parameter’s legal range. For example, to
convert the parametric equation set # = t2 + ¢, y = t3 + 1 to an implicit equation
in # and y, we can use the method of resultants to consider each equation as a
polynomial in ¢, the variable that we wish to eliminate.

t?+t—x = 0
2+0t2+0t+(1—y) = 0
then form the coefficients into a 5 x 5 determinant, with each list of coefficients
repeated several times. The first several rows each contain the coefficients of
the first equation, each time shifted one column to the right. The unused entries
are zero-filled. The remaining rows similarly contain the second equation’s
coefficients. The number of rows of each type is chosen to make the whole
determinant square.

1 1 —= 0 0
01 1 —x 0
0 0 1 1 —x
1 0 0 1-y 0
01

0 0 1—y
=z - Bz+Dy—-1)-(y-1*=0

The Groebner basis method is better than the resultant method for this
purpose, in that it is faster and the resulting equation has no extraneous roots.
However it is also too complicated to discuss here.

Turning an implicit equation into a parametric system of equations is pos-
sible sometimes. Turning an implicit or parametric equation into an explicit
equation is usually impossible.

6.3 Polynomial, rational, or otherwise

If we wish to represent (x,y) using parametric equations in ¢, what type of
equations are best?

Polynomial e.g., (t) = 2t> — 5t — 3t + 4. This is the simplest and fastest.
However parametric polynomials, or any degree, cannot represent a circle
exactly. On the other hand, the approximation can be made as good as
desired by using multiple curve segments as described below in section 8.

Even using only one cubic polynomial to represent one quarter of a circle
has a maximum error of about only 1%.

Rational A rational expression is the ratio of two polynomials. As the ex-
ample under parametric curves in section 6.1 above shows, a circle can
be represented exactly as the ratio of two quadratic polynomials. How-
ever equally-spaced values of ¢ give very unequally-spaced points, i.e.,
(d=x/dt)? + (dy/dt)? varies a lot.

Another advantage of rational curves is that they allow perspective trans-
formations, while a perspective transformation of a polynomial curve is
probably not exactly representable as a polynomial. Rational curves are
used in CAD, but they are probably overkill in GIS.

Other possibilities such as transcendental functions exist. We can represent
a circle as («(¢) = cos(t), y(¢) = sin(¢)) and points move at a constant speed
as t varies. However almost every operation on such equations is much
more complicated and slower, so this option is rarely used.

Therefore, we recommend using polynomial equations.

6.4 Degree of equation

The next question is, how to approximate data that are too complicated for a
simple curve, of say the third degree. The obvious answer is to raise the degree
of the curve to give it more degrees of freedom. Considering an explicit curve,
for simplicity, with a Lagrangian interpolation, we can exactly interpolate 4
points with a cubic, and, in general, NV + 1 points with an IN-degree curve.
Indeed, given (x;,y;), ¢ = 0..IN, we can calculate

L;(x) =H T

T m; — @

Then ~
y@) = yiLi(x)

¢=0
This is an exact fit; the curve goes through the points. The problem is what
the curve does between the points: it often oscillates wildly, with the size of the
swing rising exponentially with the number of points. This brings us back to
the minimization of variation criterion.

Another problem with high degree fits is that there are numerical roundoff
problems in calculating the coefficients. This process involves evaluating an
ill-conditioned determinant, whose value is inverse exponential in V.

Finally, the classification of higher degree curves is more complicated, most
easily seen with implicit curves in 2-D. First-degree curves are straight lines.

Second-degree curves are conics. Already complications arise since some equa-
tions, such as 2 — y? = 1, have two components, while others, such as
22 + y2 = —1, have no solution. Third-degree curves continue the progression
in difficulty. They may cross themselves, and have isolated points. Whether or
not an implicit cubic, such as 3 + zy + 2 = 0, has a parametric form depends
on the coefficients. Even determining the number of separate components is
difficult.

For these reasons, the consensus tends to be not to use one high-degree
curve, but rather to use several connected pieces of low-degree curves. The
joins are smooth enough that the user cannot see them, which generally implies
that the tangents and radii of curvature are continuous across the join. This
requires that curves of at least third degree are used. Higher degrees are
generally unnecessary. Therefore we recommend using segments of curves
each of which are cubic parametric polynomials, or a cubic spline.

7 'The Bézier curve

We have decided by now to use a sequence of cubic parametric polynomials to
represent a curve. One such piece is often called a Bernstein-Bézier curve, or,
simply, a Bézier curve, after Pierre Bézier who invented them to design auto
bodies for Renault. The cubic Bézier curve in two dimensions consists of a
parameter, ¢, ranging from 0 to 1, and two equations:

3 3
@) =) a;t' Yy => bit'
=0 =0

Note that there are eight degrees of freedom, i.e., eight coefficients to determine:
a;, b;, for iz =0..3. Since we are geographers, not human calculators, we need a
better interface than merely explicitly supplying the coefficients.

One method is to specify the two endpoints of the curve, and its derivative
(dx /dt,dy/dt) at the ends. This supplies eight numbers to match the degrees
of freedom. However another method is more convenient here, that is, defining
a control polygon.

A control polygon is a quadrilateral, with vertices Py P; P, P53 that controls
the shape of the curve. The curve starts at Py and ends at P;. Its derivative
at Py is 1/3 Py Py, i.e. pointing from P, to P; with magnitude one third of that
line. Likewise its derivative at P3 is 1/3 PoP3. The tangent in each case is
the derivative, normalized to be of unit length. The important thing is the
direction of each tangent, towards the adjacent control point. The 1/3 just
makes the math easier. Note the four control points have eight degrees of
freedom, which matches the desired number.

A general point on the curve, P(t), is a linear combination, or weighted sum,

of the four control points:

3
P(t) =) wit)P,

=0

The weights, w;(t) depend on the value of ¢ thus:

| . .
3! 'tr(l_ t)3—r

0= G o

¢! means z-factorial: 0! = 1! =1, 2! =2, 3! = 6.

1 T T T T
w0 —
wl ---+
0.8 - w2 - _
W3
@ 0.6 -
Ry
o
2 S
04 | N N .
02 / -
0 f |]] \“\\
0 0.2 0.4 0.6 0.8 1
Parameter

Figure 1: The Four Weight Functions for a Cubic Bezier Curve

Here are some sample points.

P(0)
P(0.1)

»(3)

P
0.729Py + 0.243P; + 0.027P5 + 0.001 P3
1

3 3 1
—Py+—-P;+-Py,+ - P.
3 o+8 1+8 2+8 3

Since the four weights sum to one, the curve is always inside the convex hull
of the four points. Therefore, if the control polygon is relatively flat, then so will
be the curve. Figure 2 shows some control polygons and their corresponding

Bézier curves.

PL.

Figure 2: Some Bézier Control Polygons and Corresponding Curves

8 The B-spline

We wish to represent a complex curve as a spline composed of cubic polynomial
parametric segments, or a B-spline, since using a single curve of higher degree
has the disadvantages described above in section 6.4.

We’ll define the curve with a sequence of n + 1 control points, Py, Py,. .., Py,
with n > 3. The spline will have n —2 segments, Q3, Qy4,- .., Q.. Each segment
will be affected by only four control points, and each control point will affect
only four segments. Segment Q; will be affected by points P;_g,..., P;, and
control point P; will affect segments Q;, ..., Q3. This concept is called local
control.

The parameter ¢ varies from 3 to n + 1 in this simplest, or uniform, spline.
In segment Q,, t is in the range [z,2 + 1]. Aknot is where two curve segments
join, and the knot value is the parameter value at the knot. Here the knots are
at 3,4,...,n + 1 since the endpoints of the whole spline are also knots.

The spline has C? continuity since (dx/dt, dy/dt) and (d?z/dt?, d’y /dt?)
are continuous at each knot. This is stricter than we actually need, since, for
example the tangent would still be continuous if (dx/dt, dy /dt) kept the same
direction but changed its length across the knot. This could be caused by the
parameterization of the curve, independently of the curve itself. Splines which
have only this geometric continuity, or G*, are called 3-splines. They are more
general since they have extra degrees of freedom, but are too complicated for
our purpose.

10

Every point on a B-spline is the linear combination of four control points. If
we define four weighting functions:

wot) = (1—1)3/6

wi(t) = (3t —6t2+4)/6
wot) = (=32 +3t2+3t+1)/6
wat) = t3/6

then

3
Pt) =Y wit— [t])Pl_3), 3<t<n+1 6h)
i=0
The B-spline does not go through any control points, even the end ones, unless
some control points are superimposed or duplicated. A double control point
reduces the continuity and the corresponding knot from C? to C'. A triple
control point reduces the continuity to C?, i.e., the curve has a corner here, and
it goes through the control point. The adjacent curve segments are straight lines
in this case. There is a generalization of the B-spline, called a non-uniform B-
spline, where the parameter does not vary equally from control point to control
point. Here instead of having different knot values giving coincident control
points, we duplicate the same knot value at some control points. This handles
multiple control points better, but the weight functions are more complicated
to calculate. Figure 3 shows an example of a B-spline on ten control points,
together with the control polygon (PyP; ...) and the knots (K3Kj...).

9 The Catmull-Rom-Overhauser Spline

B-splines do not go through their control points, which is alright for a freeform
designer, but less desirable when we wish to fit a spline to some data. The
Catmull-Rom-Overhauser splines go through, or interpolate, their control
points. In addition, the tangent to the spline at control point P; is in the direc-
tion P;_1P;;1. Thus each segment is defined by two points and two derivatives,
which give the correct number of degrees of freedom. This spline is defined as
follows.

wo(t) (-t +2t2 —1)/2

wi(t) = (3t —5t%+2)/2

wa(t) (-3t +41® + 1)/2
ws(t) - 12)/2

and then equation (1) is the same. Figure 4 shows an example on the same
control polygon as in Figure 3. The knots are not shown since they are the
same as the control points.

11

Figure 3: B-spline on Ten Control Points

10 Knot Selection

There is no simple answer to the question of how to pick the spline’s knots,
i.e., how to cut the complex curve into the cubic parametric pieces. An optimal
solution, giving the best fit with the fewest degrees of freedom, is infeasible. If
a designer is creating a curve with a CAD package, then he can always split a
cubic into two new cubics with their control points. The first new cubic exactly
matches the first half of the old cubic, and the second new cubic matches the
second half of the old one. Then the designer can move their control points
separately and make the spline more complicated.

However since we are more likely to be fitting a spline to existing data,
the Douglas-Poiker line generalization algorithm, extended to curves, might be
more appropriate. If the existing data is a chain of points, then the process
might go as follows.

1. Initially represent the curve as a Catmull-Rom-Overhauser spline with
the four control points as the two endpoints, and two points about 1/3
and 2/3 of the way along the chain.

2. Find the distance of every point from the chain.

12

Figure 4: Catmull-Rom-Overhauser Spline On The Same Points

3. If the farthest point is farther than the tolerance from the chain, then
make this point a knot and split the cubic curve there into two cubics.

4. Repeat the tolerance test on both spline parts, subdividing until the input
chain is adequately represented as a spline.

The above is only a suggestion, and leaves room for research into at least the
following questions.

e Is there a faster method of accuracy measurement than the distance of a
point to the spline?

e Should we use a Bézier spline instead?

e Even with a Catmull-Rom spline, might we pick control points that are
not in the input chain of points?

11 Producing points from the curve

To plot a curve, it is usually necessary to extract a sequence of points along
it. For each value of the parameter ¢, we can substitute into the parametric

13

equations «(¢) and y(t) to find (x,y). The problems with this are, first, what
values of ¢ to use, and, second, that there might be faster methods to find a
large number of points.

11.1 Difference tables

If equally spaced values of ¢ are desired, the fastest way is to establish a
difference table. E.g., to find =(t) att = 0,0.01,0.02, - - -, we can do the following.
Find the first four z(t). Find the differences between their values, D; = ;.1 — ;.
Then find the second order differences, D? = D41 — Dy, and, finally, the third
order differences, P? = D2, — D?. The third-order differences are constant for
a cubic, so we can then sum backwards three times to get each new =;. For
instance, with «(t) = 10000003 — 50000¢> + 300t + 10, we get this table:

i t w; D; D! D}
0 0 10 -1 —4 6
1 001 9 -5 2 6
2 002 4 -3 8 6
3 003 1 5 14 6
4 004 6 19 20

5 0.05 25 39

6 0.06 64

The numbers in Roman type are calculated left-to-right from the given data,
then the numbers in italics are calculated right-to-left from them. With this
method, finding a new «; requires only three additions and no multiplications,
so each new point requires only six additions and no multiplications. Here
Dt = 0.01 to show that it need not be one.

What increment should we use for ¢ since the points may be very unequally
spaced? (In the worst case, the curve might even backtrack on itself as ¢ in-
creases, as does = = t3 — t, y = t> — t. We'll ignore such badly parameterized
curves.) We might always differentiate to get (dz/dt, dy/dt) and then maxi-
mize that over the interval. However, it’s probably adequate simply to use a
small value for the increment.

One concern with difference tables is that any errors will also grow cubically.
If 2¢ were calculated as 10.1 instead of 10, then the third difference would be
calculated as 5.9 instead of 6, which would be equivalent to changing the leading
term of the polynomial by one part in 60.

11.2 Recursive subdivision

Alternatively, we might subdivide the curve recursively until each piece is small
enough that it appears straight. E.g., we start with the curve fort = 0, .., 1, and
its endpoints, Py, P;. Evaluate P5 = (x(.5), y(.5)) and find its distance from the
line Py P;. If Pj5 is too far away, then split the curve there and repeat on the two
halves. Note that P5 may be close also if the curve bends to one side, crosses

14

over the straight line at the point, and then bends to the other side. Therefore,
we should always do some subdivisions. In practice, subdividing for five levels
to produce 31 points on the curve seems quite sufficient.

If we have the four control points drawn on a sheet of paper, then it is possible
to find the midpoint of the curve by finding the midpoints of six line segments.
By repeating this, we can sketch the curve by hand. More generally, to find
P(t) given the control points PyP; P, Ps, first we divide the control polygon’s
sides in the ratio 1 — ¢ : ¢, so that Q; = (1 — ¢)P; + tP;,1, for = 0, 1, 2. Then we
repeat, R; = (1 — t)Q; +tQ;,1 for = 0,1, and, finally, P(¢) = (1 — t)Ry + tR;.

Figure 5: Recursive Construction of a Bezier Curve

Figure 5 shows finding the midpoint X at (¢ = 1/2). The original control
points are labeled and shown by circles; the construction lines are dashed. A
benefit of this process is that that it splits the Bézier curve into two parts at
the midpoint, and produces the new control points of each half. In this case,
the four control points of the first half are PyQoR¢X (marked by small boxes)
and for the right half: X R;QsPs;. The two smaller Bézier curves match the
original curve exactly. However, these two new control polygons are flatter,
so that continuing the process to about five levels produces a piece-wise linear
representation of the curve. In Figure 5 we’ve also split the first half curve
in half, using dotted construction lines, and marked the control points of the
quarter-curve with diamonds.

15

12 Summary

We have seen various issues in the representation of cartographic lines by
curves. If we decide that curves are advantageous, we must select a crite-
rion for the goodness of fit, and know our data characteristics and the desired
operations. We will probably choose a spline composed of parametric cubic
polynomial curves to approximate the line. Each curve in the spline might be
a Bézier polynomial, and they might be connected at knots into a perhaps a B-
spline or Catmull-Rom-Overhauser spline. In either case, knot selection might
be done with the Douglas-Poiker algorithm. Finally, we can easily return from
the spline to a sequence of points by various methods.

13 Acknowledgements

Parts of this work were supported by NSF grant CCR-9102553, by the Di-
rectorate for Computer and Information Science and Engineering, NSF Grant
CDA-8805910, and by the Gruppo Nazionale Informatica Matematica of the
Italian National Research Council. This idea was suggested by David Douglas.

References

[Cho91] Byong K. Choi. Surface modeling for CAD/CAM, volume 11 of
Advances in industrial engineering. Elsevier, 1991.

[FKN89] Wm Randolph Franklin, Mohan Kankanhalli, and Chandrasekhar
Narayanaswami. Geometric computing and the uniform grid data
technique. Computer Aided Design, 21(7):410-420, 1989.

[FNK*89] Wm Randolph Franklin, Chandrasekhar Narayanaswami, Mohan
Kankanhalli, David Sun, Meng-Chu Zhou, and Peter YF Wu. Uni-
form grids: A technique for intersection detection on serial and
parallel machines. In Proceedings of Auto Carto 9: Ninth Interna-
tional Symposium on Computer-Assisted Cartography, pages 100—
109, Baltimore, Maryland, 2-7 April 1989.

[FP81] 1.D. Faux and M.J. Pratt. Computational geometry for design and
manufacture. Mathematics and its applications. Halsted Press,
1981.

[FvDFH90] James D. Foley, Andries van Dam, Steven K. Feiner, and John F.
Hughes. Computer Graphics: Principles and Practice. Systems
Programming Series. Addison-Wesley, 2nd edition, 1990.

16

Do not print this page (the page numbers would be
wrong when the article was printed; this for your informa-
tion only. Of course, if you give me the final page numbers,
I can make the table of contents correct.

Contents
1 Introduction 1
2 Why use curves? 2
3 Criteria for goodness of fit 2
4 Characteristics of the data 3
5 Desired operations 4
6 Form of equation 5
6.1 Explicit, implicit, or parametric? 5
6.2 CONVErSIONS . . & v v v v e v e et e e e s e e e e e e e e 6
6.3 Polynomial, rational, or otherwise 6
6.4 Degreeofequation 7
7 The Bézier curve 8
8 The B-spline 10
9 The Catmull-Rom-Overhauser Spline 11
10 Knot Selection 12
11 Producing points from the curve 13
11.1 Difference tables 0 0 i it e e e e 14
11.2 Recursive subdivision &« o vttt a e e 14
12 Summary 16
13 Acknowledgements 16
References 16

This file was formatted on January 14, 1993.

17

