CS 193G

Lecture 1: Introduction to Massively Parallel Computing
Course Goals

- Learn how to program massively parallel processors and achieve
 - High performance
 - Functionality and maintainability
 - Scalability across future generations
- Acquire technical knowledge required to achieve above goals
 - Principles and patterns of parallel programming
 - Processor architecture features and constraints
 - Programming API, tools and techniques
People

Lecturers
- Jared Hoberock: jaredhoberock at gmail.com
- David Tarjan: tar.cs193g at gmail.com
- Office hours: 3:00-4:00 PM, Tu Th, Gates 195

Course TA
- Niels Joubert: njoubert at cs.stanford.edu

Guest lecturers
- Domain experts
Web Resources

Website:
- Lecture slides/recordings
- Documentation, software resources
- Note: while we’ll make an effort to post announcements on the web, we can’t guarantee it, and won’t make allowances for people who miss things in class

Mailing list
- Channel for electronic announcements
- Forum for Q&A – Lecturers and assistants read the board, and your classmates often have answers

Axess for Grades
This is a lab oriented course!

Machine problems: 50%
- Correctness: ~40%
- Performance: ~35%
- Report: ~25%

Project: 50%
- Technical pitch: 25%
- Project Presentation: 25%
- Demo: 50%
Bonus Days

- Every student is allocated two bonus days
 - No-questions asked one-day extension that can be used on any MP
 - Use both on the same thing if you want
 - Weekends/holidays don’t count for the number of days of extension (Friday-Monday is just one day extension)

- Intended to cover illnesses, interview visits, just needing more time, etc.

- Late penalty is 10% of the possible credit/day, again counting only weekdays
Academic Honesty

- You are allowed and encouraged to discuss assignments with other students in the class. Getting verbal advice/help from people who’ve already taken the course is also fine.

- **Any reference to assignments from previous terms or web postings is unacceptable**

- **Any copying of non-trivial code is unacceptable**
 - Non-trivial = more than a line or so
 - Includes reading someone else’s code and then going off to write your own.
Course Equipment

- Your own PCs with a CUDA-enabled GPU
- NVIDIA \textbf{GeForce GTX 260} boards
 - Lab facilities: Pups cluster, Gates B21
 - Nodes 2, 8, 11, 12, & 13
 - New Fermi Architecture GPUs?
 - As they become available
Text & Notes

Course text:

References:

Lectures will be posted on the class website.
Schedule

- Week 1:
 - Tu: Introduction
 - Th: CUDA Intro
 - MP 0: Hello, World!
 - MP 1: Parallel For
- Week 2
 - Tu: Threads & Atomics
 - Th: Memory Model
 - MP 2: Atomics
- Week 3
 - Tu: Performance
 - Th: Parallel Programming
 - MP 3: Communication
- Week 4
 - Tu: Project Proposals
 - Th: Parallel Patterns
 - MP 4: Productivity
- Week 5
 - Tu: Productivity
 - Th: Sparse Matrix Vector
- Week 6
 - Tu: PDE Solvers Case Study
 - Th: Fermi
- Week 7
 - Tu: Ray Tracing Case Study
 - Th: Future of Throughput
- Week 8
 - Tu: AI Case Study
 - Th: Advanced Optimization
- Week 9
 - Tu: TBD
 - Th: Project Presentations
- Week 10
 - Tu: Project Presentations
Moore’s Law (paraphrased)

“The number of transistors on an integrated circuit doubles every two years.”
– Gordon E. Moore
Moore’s Law (Visualized)

Transistor Count

10,000,000,000
1,000,000,000
100,000,000
10,000,000
1,000,000
100,000
10,000
1,000

Intel 4004
Pentium
Atom
GF100

Buying Performance with Power

(courtesy Mark Horowitz and Kevin Skadron)
Serial Performance Scaling is Over

- **Cannot** continue to scale processor frequencies
 - no 10 GHz chips

- **Cannot** continue to increase power consumption
 - can’t melt chip

- **Can** continue to increase transistor density
 - as per Moore’s Law
How to Use Transistors?

- **Instruction-level parallelism**
 - out-of-order execution, speculation, …
 - *vanishing opportunities* in power-constrained world

- **Data-level parallelism**
 - vector units, SIMD execution, …
 - *increasing* … SSE, AVX, Cell SPE, Clearspeed, GPU

- **Thread-level parallelism**
 - *increasing* … multithreading, multicore, manycore
 - Intel Core2, AMD Phenom, Sun Niagara, STI Cell, NVIDIA Fermi, …
Why Massively Parallel Processing?

A quiet revolution and potential build-up

Computation: TFLOPs vs. 100 GFLOPs

- NVIDIA GPU
- Intel CPU

GPU in every PC – massive volume & potential impact
Why Massively Parallel Processing?

- A quiet revolution and potential build-up
- Bandwidth: ~10x

- GPU in every PC – massive volume & potential impact
The “New” Moore’s Law

- Computers no longer get faster, just wider
- You *must* re-think your algorithms to be parallel!
- Data-parallel computing is most scalable solution
 - Otherwise: refactor code for 2 cores 4 cores 8 cores 16 cores...
 - You will always have more data than cores – build the computation around the data
Generic Multicore Chip

- Handful of processors each supporting ~1 hardware thread
- **On-chip memory** near processors (cache, RAM, or both)
- **Shared global memory** space (external DRAM)
Generic Manycore Chip

- Many processors each supporting **many hardware threads**
- **On-chip memory** near processors (cache, RAM, or both)
- **Shared global memory** space (external DRAM)
Enter the GPU

- Massive economies of scale
- Massively parallel
GPU Evolution

- **High throughput** computation
 - GeForce GTX 280: 933 GFLOP/s
- **High bandwidth** memory
 - GeForce GTX 280: 140 GB/s
- **High availability** to all
 - 180+ million CUDA-capable GPUs in the wild

© 2008 NVIDIA Corporation
Lessons from Graphics Pipeline

- **Throughput** is paramount
 - must paint every pixel within frame time
 - scalability

- Create, run, & retire **lots of threads** very rapidly
 - measured 14.8 Gthread/s on `increment()` kernel

- Use **multithreading** to hide latency
 - 1 stalled thread is OK if 100 are ready to run
Why is this different from a CPU?

Different goals produce different designs
- GPU assumes work load is highly parallel
- CPU must be good at everything, parallel or not

CPU: minimize latency experienced by 1 thread
- big on-chip caches
- sophisticated control logic

GPU: maximize throughput of all threads
- # threads in flight limited by resources => lots of resources (registers, bandwidth, etc.)
- multithreading can hide latency => skip the big caches
- share control logic across many threads
NVIDIA GPU Architecture

Fermi GF100
SM Multiprocessor

- 32 CUDA Cores per SM (512 total)
- 8x peak FP64 performance
 - 50% of peak FP32 performance
- Direct load/store to memory
 - Usual linear sequence of bytes
 - High bandwidth (Hundreds GB/sec)
- 64KB of fast, on-chip RAM
 - Software or hardware-managed
 - Shared amongst CUDA cores
 - Enables thread communication
Key Architectural Ideas

SIMT (Single Instruction Multiple Thread) execution
- threads run in groups of 32 called **warps**
- threads in a warp share instruction unit (IU)
- HW automatically handles divergence

Hardware multithreading
- HW resource allocation & thread scheduling
- HW relies on threads to hide latency

Threads have all resources needed to run
- any warp not waiting for something can run
- context switching is (basically) free
Enter CUDA

- Scalable parallel programming model
- Minimal extensions to familiar C/C++ environment
- Heterogeneous serial-parallel computing
Motivation
CUDA: Scalable parallel programming

- Augment C/C++ with minimalist abstractions
 - let programmers focus on parallel algorithms
 - *not* mechanics of a parallel programming language

- Provide straightforward mapping onto hardware
 - good fit to GPU architecture
 - maps well to multi-core CPUs too

- Scale to 100s of cores & 10,000s of parallel threads
 - GPU threads are lightweight — create / switch is free
 - GPU needs 1000s of threads for full utilization
Key Parallel Abstractions in CUDA

- Hierarchy of concurrent threads
- Lightweight synchronization primitives
- Shared memory model for cooperating threads
Hierarchy of concurrent threads

- Parallel **kernels** composed of many threads
 - all threads execute the same sequential program

- Threads are grouped into **thread blocks**
 - threads in the same block can cooperate

- Threads/blocks have unique IDs
CUDA Model of Parallelism

CUDA virtualizes the physical hardware
- thread is a virtualized scalar processor (registers, PC, state)
- block is a virtualized multiprocessor (threads, shared mem.)

Scheduled onto physical hardware without pre-emption
- threads/blocks launch & run to completion
- blocks should be independent
NOT: Flat Multiprocessor

- Global synchronization isn’t cheap
- Global memory access times are expensive

- cf. PRAM (Parallel Random Access Machine) model
NOT: Distributed Processors

Distributed computing is a different setting

cf. BSP (Bulk Synchronous Parallel) model, MPI
Heterogeneous Computing

Multicore CPU

Manycore GPU
C for CUDA

Philosophy: provide minimal set of extensions necessary to expose power

Function qualifiers:

```c
__global__ void my_kernel() { }
__device__ float my_device_func() { }
```

Variable qualifiers:

```c
__constant__ float my_constant_array[32];
__shared__ float my_shared_array[32];
```

Execution configuration:

```c
dim3 grid_dim(100, 50);  // 5000 thread blocks
dim3 blockDim(4, 8, 8);  // 256 threads per block
my_kernel <<< grid_dim, blockDim >>> (...);  // Launch kernel
```

Built-in variables and functions valid in device code:

```c
dim3 gridDim;   // Grid dimension
dim3 blockDim; // Block dimension
dim3 blockIdx; // Block index
dim3 threadIdx; // Thread index
void __syncthreads(); // Thread synchronization
```
Example: vector_addition

// compute vector sum \(c = a + b\)
// each thread performs one pair-wise addition

```c
__global__
void vector_add(float* A, float* B, float* C)
{
    int i = threadIdx.x + blockDim.x * blockIdx.x;
    C[i] = A[i] + B[i];
}
```

```c
int main()
{
    // elided initialization code
    ...
    // Run \(N/256\) blocks of 256 threads each
    vector_add<<< N/256, 256>>> (d_A, d_B, d_C);
}
```
Example: vector_addition

```c
// compute vector sum c = a + b
// each thread performs one pair-wise addition
__global__ void vector_add(float* A, float* B, float* C)
{
    int i = threadIdx.x + blockDim.x * blockIdx.x;
    C[i] = A[i] + B[i];
}
```

```c
int main()
{
    // elided initialization code
    ...
    // launch N/256 blocks of 256 threads each
    vector_add<<< N/256, 256>>>(d_A, d_B, d_C);
}
```
Example: Initialization code for `vector_addition`

```c
// allocate and initialize host (CPU) memory
float *h_A = ..., *h_B = ...;

// allocate device (GPU) memory
float *d_A, *d_B, *d_C;
cudaMalloc( (void**) &d_A, N * sizeof(float));
cudaMalloc( (void**) &d_B, N * sizeof(float));
cudaMalloc( (void**) &d_C, N * sizeof(float));

// copy host memory to device
cudaMemcpy( d_A, h_A, N * sizeof(float), cudaMemcpyHostToDevice );
cudaMemcpy( d_B, h_B, N * sizeof(float), cudaMemcpyHostToDevice );

// launch N/256 blocks of 256 threads each
vector_add<<<N/256, 256>>>(d_A, d_B, d_C);
```
<table>
<thead>
<tr>
<th>Application</th>
<th>Description</th>
<th>Source</th>
<th>Kernel</th>
<th>% time</th>
</tr>
</thead>
<tbody>
<tr>
<td>H.264</td>
<td>SPEC ‘06 version, change in guess vector</td>
<td>34,811</td>
<td>194</td>
<td>35%</td>
</tr>
<tr>
<td>LBM</td>
<td>SPEC ‘06 version, change to single precision and print fewer reports</td>
<td>1,481</td>
<td>285</td>
<td>>99%</td>
</tr>
<tr>
<td>RC5-72</td>
<td>Distributed.net RC5-72 challenge client code</td>
<td>1,979</td>
<td>218</td>
<td>>99%</td>
</tr>
<tr>
<td>FEM</td>
<td>Finite element modeling, simulation of 3D graded materials</td>
<td>1,874</td>
<td>146</td>
<td>99%</td>
</tr>
<tr>
<td>RPES</td>
<td>Rye Polynomial Equation Solver, quantum chem, 2-electron repulsion</td>
<td>1,104</td>
<td>281</td>
<td>99%</td>
</tr>
<tr>
<td>PNS</td>
<td>Petri Net simulation of a distributed system</td>
<td>322</td>
<td>160</td>
<td>>99%</td>
</tr>
<tr>
<td>SAXPY</td>
<td>Single-precision implementation of saxpy, used in Linpack’s Gaussian elim. routine</td>
<td>952</td>
<td>31</td>
<td>>99%</td>
</tr>
<tr>
<td>TPACF</td>
<td>Two Point Angular Correlation Function</td>
<td>536</td>
<td>98</td>
<td>96%</td>
</tr>
<tr>
<td>FDTD</td>
<td>Finite-Difference Time Domain analysis of 2D electromagnetic wave propagation</td>
<td>1,365</td>
<td>93</td>
<td>16%</td>
</tr>
<tr>
<td>MRI-Q</td>
<td>Computing a matrix Q, a scanner’s configuration in MRI reconstruction</td>
<td>490</td>
<td>33</td>
<td>>99%</td>
</tr>
</tbody>
</table>
Speedup of Applications

- GeForce 8800 GTX vs. 2.2GHz Opteron 248
- 10× speedup in a kernel is typical, as long as the kernel can occupy enough parallel threads
- 25× to 400× speedup if the function’s data requirements and control flow suit the GPU and the application is optimized
Final Thoughts

- Parallel hardware is here to stay
- GPUs are massively parallel manycore processors
 - easily available and fully programmable
- Parallelism & scalability are crucial for success
- This presents many important research challenges
 - not to speak of the educational challenges
Machine Problem 0

- Work through tutorial codes
 - hello_world.cu
 - cuda_memory_model.cu
 - global_functions.cu
 - device_functions.cu
 - vector_addition.cu