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ABSTRACT
We present 3D-EPUG-Overlay, a fast, exact, parallel, memory-
e�cient, algorithm for computing the intersection between two
large 3-D triangular meshes with geometric degeneracies. Appli-
cations include CAD/CAM, CFD, GIS, and additive manufacturing.
3D-EPUG-Overlay combines 5 separate techniques: multiple pre-
cision rational numbers to eliminate roundo� errors during the
computations; Simulation of Simplicity to properly handle geo-
metric degeneracies; simple data representations and only local
topological information to simplify the correct processing of the
data and make the algorithm more parallelizable; a uniform grid
to e�ciently index the data, and accelerate testing pairs of trian-
gles for intersection or locating points in the mesh; and parallel
programming to exploit current hardware. 3D-EPUG-Overlay is
up to 101 times faster than LibiGL, and comparable to QuickCSG, a
parallel inexact algorithm. 3D-EPUG-Overlay is also more mem-
ory e�cient. In all test cases 3D-EPUG-Overlay’s result matched
the reference solution. It is freely available for nonpro�t research
and education at https://github.com/sallesviana/MeshIntersection
. The full version of this paper is being presented at the 2018 In-
ternational Meshing Roundtable; it is currently online at https:
//project.inria.fr/imr27/�les/2018/09/1035.pdf.
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1 INTRODUCTION
The classic problem of intersecting two 3-Dmeshes has been a foun-
dational component of CAD systems for some decades. However,
as data sizes grow, and parallel execution becomes desirable, the
classic algorithms and implementions now exhibit some problems.
1. Roundo� errors. Floating point numbers violate most of the ax-

ioms of an algebraic �eld, e.g., (a + b) + c , a + (b + c). These
arithmetic errors cause topological errors, such as causing a
point to be seen to fall on the wrong side of a line. Those in-
consistencies propagate, causing, e.g., nonwatertight models.
Heuristics exist to ameliorate the problem, and they work, but
only up to a point. Larger datasets mean a larger probability of
the heuristics failing.

2. Special cases (geometric degeneracies). These include a vertex of
one object incident on the face of another object. In principle,
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simple cases could be enumerated and handled. However, some
widely available software fails.

3. Another problem is that current data structures are too complex
for easy parallelization. E�cient parallelization prefers simple
regular data structures, such as structures of arrays of plain old
datatypes That disparages pointers, linked lists, and trees.
Some components of 3D-EPUG-Overlay have been presented

earlier. PinMesh preprocesses a 3D mesh so that point locations
can be performed quickly [24]. EPUG-Overlay overlays 2D meshes
[23].

Background: Kettner et al [21] studied failures caused by round-
o� errors in geometric problems. They also showed situationswhere
epsilon-tweaking failed. Snap rounding arbitrary precision seg-
ments into �xed-precision numbers, Hobby [19], can also gener-
ate inconsistencies and deform the original topology. Variations
attempting to get around these issues include de Berg et al [6],
Hersberger [18], and Belussi et al [2]. Controlled Perturbation (CP),
Melhorn [27], slightly perturbs the input to remove degeneracies
such that the geometric predicates are correctly evaluated even
using �oating-point arithmetic. Adaptive Precision Floating-Point,
Shewchuk [30], exactly evaluates predicates (e.g. orientation tests)
using the minimum necessary precision.

Exact Geometric Computation (EGC), Li [22], represents mathe-
matical objects using algebraic numbers to perform computations
without errors. However this is slow.

One technique to accelerate algorithms based on exact arithmetic
is to employ arithmetic �lters and interval arithmetic, Pion et al
[29], such as embodied in CGAL [4].

Current freely available implementations: One technique for over-
laying 3-D polyhedra is to convert the data to a volumetric rep-
resentation (voxelization), perhaps stored as an octree, Meagher
[26], and then perform the overlay using the converted data. For
exactly computing overlays, a common strategy is to use indexing
to accelerate operations such as computing the triangle-triangle
intersection. For example, Franklin [12] uses a uniform grid to in-
tersect two polyhedra, Feito et al [11] and Mei et al [28] use octrees,
and Yongbin et al [32] use Oriented Bounding Boxes trees (OBBs)
to intersect triangulations.

Another algorithm that does not guarantee robustness is QuickCSG,
Douze et al [9], which is designed to be extremely e�cient. QuickCSG
employs parallel programming and a k-d-tree index to accelerate
the computation. However, it does not handle special cases (it as-
sumes vertices are in general position), and does not handle the
numerical non-robustness from �oating-point arithmetic, Zhou et
al [33]. To reduce errors caused by special cases, QuickCSG allows
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the user to apply random numerical perturbations to the input, but
this has no guarantees.

Although small errors may sometimes be acceptable, they accu-
mulate if several inexact operations are performed in sequence. This
gets even worse in CAD and GIS where it is common to compose
operations. For use when exactness is required, Hachenberger et al
[17] presented an algorithm for computing the exact intersection
of Nef polyhedra.

Bernstein et al [3] presented an algorithm that tries to achieve
robustness in mesh intersection by representing the polyhedra
using binary space partitioning (BSP) trees with �xed-precision
coordinates. It can intersect two such polyhedra by only evaluating
�xed-precision predicates. However, in 3D, the BSP representation
often has superlinear size, because the partitioning planes intersect
so many objects. Also, converting BSPs back to more widely used
representations (such as triangular meshes) is slow and inexact.

Recently, Zhou [33] presented an exact and parallel algorithm
for performing booleans on meshes. The key is to use the concept
of winding numbers to disambiguate self-intersections on the mesh.
That algorithm is freely available and distributed in the LibiGL
package, Jacobson et al [20]. Its implementation employs CGAL’s
exact predicates. The triangle-triangle intersection computation is
also accelerated using CGAL’s bounding-box-based spatial index.
LibiGL is not only exact, but also much faster than Nef Polyhedra.
However, it is still slower than fast inexact algorithms such as
QuickCSG.

2 OUR TECHNIQUES
Our solution to the above problems combines the following �ve
techniques.

Big rational numbers: Representing a number as the quotient of
two integers, each represented as an array of groups of digits, is a
classic technique. The fundamental limitation is that the number of
digits grows exponentially with the depth of the computation tree.
Our relevant computation comprises comparing the intersection
of two lines de�ned by their endpoints against a plane de�ned by
three vertices. So, this growth in precision is quite tolerable.

The implementation challenges are harder. Many C++ implemen-
tations of new data structures automatically construct new objects
on a global heap, and assume the construction cost to be negligible.
That is false for parallel programs processing large datasets. Con-
structing and destroying heap objects has a superlinear cost in the
number of objects on the heap. Parallel modi�cations to the heap
must be serialized. Therefore we carefully construct our code to
minimize the number of times that a rational variable needs to be
constructed or enlarged. This includes minimizing the number of
temporary variables needed to evaluate an expression. Furthermore,
we use interval arithmetic as a �lter to determine when evaluation
with rationals is necessary.

Simulation of Simplicity: Simulation of Simplicity (SoS), Edels-
brunner et al [10], addresses the problem that, “sometimes, even
careful attempts at capturing all degenerate cases leave hard-to-
detect gaps”, Yap [31]. Figure 1 is a challenging case. It consists of
two pyramids with central vertices incident at a common vertex v .
v is non-manifold and is on 8 faces, 4 from each pyramid. It is not

easy to determine which of the 8 faces should intersect the ray that
would be run up from v in order to locate v . In the subproblem of
point location, RCT gets this point location case wrong; PinMesh
is correct because of SoS, Magalhães et al [24]. SoS symbolically
perturbs coordinates by adding in�nitesimals of di�erent orders.
The result is that there are no longer any coincidences, e.g., three
points are never collinear.

v

Figure 1: Di�cult test case for 3-D
point location.

Minimal topol-
ogy: A su�cient
representation of
a 3-D mesh com-
prises the follow-
ing: (a) the array
of vertices, (vi ),
where each vi =
(xi ,yi , zi ). (b) the
array of tetrahe-
dra or other poly-
hedra, ti , used solely to store properties such as density, and
(c) the array of augmented oriented triangular faces (fi ), where
fi = (vi1,vi2,vi3, ti1, ti2). The tetrahedron or polyhedron ti1 is on
the positive side of the face fi = (vi1,vi2,vi3); ti2 on the negative.
It is unnecessary to store any further relations, such as from face
to adjacent face, from vertex to adjacent face, edge loops, or face
shells.

Note that there are no pointers or lists; we need only several
structures of arrays. If the tetrahedra have no properties, then the
tetrahedron array does not need to exist, so long as the tetrahedra,
which we are not storing explicitly, are consistently sequentially
numbered. The point is to minimize what types of topology need
to be stored.

Uniform grid: The uniform grid, Akman et al [1], Franklin et al
[13–15] is used as an initial cull so that, when two objects are tested
for possible intersection, then the probability of intersecting is
bounded below by a positive number. Therefore, the number of pairs
of objects tested for intersection that do not actually intersect is
linear in the number that do intersect. Thus the expected execution
time is linear in the output size.

A careful concrete implementation of this abstraction is critical.
We tested several choices; details are in Magalhães [7]. We also
tested an octree, but our uniform grid implementation is much
faster. We also used a second level grid for some cells. This allowed
us to use an approximation to determine which faces intersected
each cell: enclosing oblique faces with a box and then marking all
the cells intersecting that box, which is more cells than necessary.

3 3-D MESH INTERSECTION

3D-EPUG-Overlay exactly intersects 3-D meshes. Its input is
two triangular meshesM0 andM1. Each mesh contains a set of 3-D
triangles representing a set of polyhedra. The output is another
mesh where each represented polyhedron is the intersection of a
polyhedron from M0 with another one from M1. The key is the
combination of �ve techniques described later. Extra details are in
Magalhães et al [7, 8, 23–25].
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Data representation: The input is a pair of triangular meshes
in 3-D (E3). Both meshes must be watertight and free from self-
intersections. The polyhedra may have complex and nonmanifold
topologies, with holes and disjoint components. The two meshes
may be identical, which is an excellent stress test, because of all
the degeneracies.

There are two types of output vertices: input vertices, and inter-
section vertices resulting from intersections between an edge of
one mesh and a triangle of the other. Similarly, there are two types
of output triangles: input triangles and triangles from retesselation.
The �rst contains only input vertices while the second may contain
vertices generated from intersections created during the retessela-
tion of input triangles. An intersection vertex is represented by an
edge and the intersecting triangle. For speed, its coordinates are
cached when �rst computed.

Retesselation of faces that were split was implemented with ori-
entation predicates, Magalhães [7], which reduced to implementing
164 functions. A Wolfram Mathematica script was developed to
create the code for all the predicates.

Experiments: 3D-EPUG-Overlay was implemented in C++ and
compiled using g++ 5.4.1. For better parallel scalability, the gperftools
Tcmalloc memory allocator [16], was employed. Parallel program-
ming was provided by OpenMP 4.0, multiple precision rational
numbers were provided by GNU GMPXX and arithmetic �lters
were implemented using the Interval_nt number type provided by
CGAL for interval arithmetic. The experiments were performed on
a workstation with 128 GiB of RAM and dual Intel Xeon E5-2687
processors, each with 8 physical cores and 16 hyper-threads, run-
ning Ubuntu Linux 16.04. We evaluated 3D-EPUG-Overlay, by
comparing it against three state-of-the-art algorithms:
1. LibiGL [33], which is exact and parallel,
2. Nef Polyhedra [4], which is exact, and
3. QuickCSG [9], which is fast and parallel, but not exact, and does

not handle special cases.
Our experiments showed that 3D-EPUG-Overlay is fast, parallel,

exact, economical of memory, and handles special cases.
Experimentswere performedwith a variety of non self-intersecting

andwatertight meshes. The datasets and lengthy results are detailed
in the full paper.

We compared 3D-EPUG-Overlay against other three algorithms.
3D-EPUG-Overlay was up to 101 times faster than LibiGL. The
only test cases where the times spent by LibiGL were similar to the
times spent by 3D-EPUG-Overlay were during the computation
of the intersections of a mesh with itself (even in these test cases
3D-EPUG-Overlay was still faster than LibiGL). In this situation,
the intersecting triangles from the two meshes are never in general
position, and thus the computation has to frequently trigger the
SoS version of the predicates, which we haven’t not optimized yet.
In the future, we intend to optimize this.

However, LibiGL also repairsmeshes (by resolving self-intersections)
during the intersection computation, which 3D-EPUG-Overlay
does not attempt.

Because of the overhead of Nef Polyhedra and since it is a sequen-
tial algorithm, CGAL was always the slowest. When computing
the intersections, 3D-EPUG-Overlay was up to 1, 284 times faster
than CGAL. The di�erence is much higher if the time CGAL spends

converting the triangular mesh to Nef Polyhedra is taken into con-
sideration: intersecting meshes with 3D-EPUG-Overlay was up to
4, 241 times faster than using CGAL to convert and intersect the
meshes.

While 3D-EPUG-Overlay was faster than QuickCSG in most
of the test cases (mainly the largest ones), in others QuickCSG
was up to 20% faster than 3D-EPUG-Overlay. The relatively small
performance di�erence between 3D-EPUG-Overlay and an inexact
method (that was speci�cally designed to be very fast) indicates
that 3D-EPUG-Overlay presents good performance allied with
exact results. Besides reporting errors during some experiments
QuickCSG also failed in some situations where errors were not
reported.

Finally, we also performed experiments with tetra-meshes. Each
tetrahedron in these meshes is considered to be a di�erent object
and, thus, the output of 3D-EPUG-Overlay is a mesh where each
object represents the intersection of two tetrahedra (from the two in-
put meshes). These meshes are particularly hard to process because
of their internal structure, which generates many triangle-triangle
intersections. For example, during the intersection of the Neptune
with the Neptune translated datasets (two meshes without internal
structure), there are 78 thousand pairs of intersecting triangles and
the resulting mesh contains 3 million triangles. On the other hand,
in the intersection of 518092_tetra (a mesh with 6 million triangles
and 3 million tetrahedra) with 461112_tetra (a mesh with 8 mil-
lion triangles and 4 million tetrahedra) there are 5 million pairs of
intersecting triangles and the output contains 23 million triangles.

To the best of our knowledge, LibiGL, CGAL and QuickCSGwere
not designed to handle meshes with multi-material and, thus, we
couldn’t compare the running time of 3D-EPUG-Overlay against
them in these test cases.

We also evaluated the peak memory usage of each algorithm.
3D-EPUG-Overlay was: almost always smaller than LibiGL, with
the di�erence increasing as the datasets became larger; smaller
than QuickCSG in every case where QuickCSG returned the cor-
rect answer; and much smaller than CGAL. A typical result was
the intersection of Neptune (4M triangles) with Ramesses (1.7M
triangles): 3D-EPUG-Overlay used 2.6GB, LibiGL used 6.7GB, and
CGAL 84GB. The largest example that 3D-EPUG-Overlay pro-
cessed, 518092Tetra (6M triangles) with 461112Tetra (8.5M triangles)
used 43GB. Magalhães [7] contains detailed results.
Correctness evaluation: 3D-EPUG-Overlay was developed on a
solid foundation (i.e., all computation is exact and special cases
are properly handled using Simulation of Simplicity) in order to
ensure correctness. However, perhaps its implementation has er-
rors? Therefore, we performed extensive experiments comparing it
against LibiGL (as a reference solution). We employed the Metro
tool, Cignoni et al [5], to compute the Hausdor� distances between
the meshes being compared. Metro is widely employed, for exam-
ple, to evaluate mesh simpli�cation algorithms by comparing their
results with the original meshes.

In every test, the di�erence between 3D-EPUG-Overlay and
LibiGL was reported as 0. In some situations the di�erence between
LibiGL and CGAL was a small number (maximum 0.0007% of the
diagonal of the bounding-box). We guess this is because the exact
results are stored using �oating-point variables, and di�erent strate-
gies are used to round the vertices to �oats and write them to the
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text �le. QuickCSG, on the other hand, generated errors much larger
than CGAL: in the worst case, the di�erence between QuickCSG
output and LibiGL was 0.13% of the diagonal of the bounding-box).
Magalhães [7] contains detailed results.
Visual inspection: We also visually inspected the results usingMesh-
Lab. Even though small changes in the coordinates of the vertices
cannot be easily identi�ed by visual inspection (and even the pro-
gram employed for displaying the meshes may have roundo� er-
rors), topological errors (such as triangles with reversed orientation,
self-intersections, etc) often stand out.

Even when QuickCSG did not report a failure, results were fre-
quently inconsistent, with open meshes, spurious triangles or in-
consistent orientations.
Rotation invariance: We also validated 3D-EPUG-Overlay by ver-
ifying that its result does not change when the input meshes are
rotated. In all the experiments Metro reported that the resulting
meshes were equal (i.e., the Hausdor� distance was 0.000000) to the
corresponding ones obtained without rotation. In addition, we in-
tersected several meshes with a rotated version of themselves. This
is a notoriously di�cult case for CAD systems because the large
number of intersections and small triangles. In every experiment
the Hausdor� distance between the two outputs was 0.000000. That
is, we can quickly process cases that can crash CAD systems.

Summary: 3D-EPUG-Overlay is an algorithm and implemen-
tation to intersect a pair of 3D triangular meshes. It is simulta-
neously the fastest, free from roundo� errors, handles geometric
degeneracies, parallelizes well, and is economical of memory. The
source code, albeit research quality, is freely available for non-
pro�t research and education at https://github.com/sallesviana/
MeshIntersection . We have extensively tested it for errors; we
encourage others to test it. It is a suitable subroutine for larger
systems such as 3D GIS or CAD systems. Computing other kinds of
overlays, such as union, di�erence, and exclusive-or, would require
modifying only the classi�cation step. We expect that 3D-EPUG-
Overlay could easily process datasets that are orders of magnitude
larger, with hundreds of millions of triangles. Finally, 3D-EPUG-
Overlay has not nearly been fully optimized, and could be made
much faster.
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